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Abstract
Moore’s Law may be slowing, but, perhaps as a result,
other measures of processor complexity are only acceler-
ating. In recent years, Intel’s architects have turned to an
alphabet soup of instruction set extensions such as MPX,
SGX, MPK, and CET as a way to sell CPUs through new
security features. Unlike prior extensions, which mostly
focused on accelerating user-mode data processing, these
new features exhibit complex interactions and give system
designers plenty to think about.

This calls for a rethink of how we approach the instruc-
tion set. In this paper we highlight some of the challenges
arising from recent security-focused extensions, and spec-
ulate about the longer-term implications.

1 Introduction
An instruction set architecture (ISA) is the key interface
between the lowest-levels of software and the CPU. The
x86 ISA is a complex but enduring set of semantics for in-
structions, registers, memory, and core devices that must
be respected by CPUs, emulators and virtual machines,
and all the software that runs on top. Successful ISAs
grow over time, and x86 is no stranger to growth given its
age and popularity. However, the last two years have seen
a dramatic and rapid increase in its complexity (e.g., seen
in the size of the architecture manual in Figure 1), with
more extensions on the way [21].

In this paper, we examine the causes of this rapid
growth, and speculate about the underlying trends driving
it. We make our case concrete with a focus on the Intel
x86 architecture and its recent extensions. As a market
leader, Intel is often the first to add new features, but we
doubt these trends are unique to Intel. As we describe in
§2, recent Intel CPUs have introduced a wide range of ISA
extensions. Whereas past extensions largely focused on
performance improvements through new data-processing
instructions (e.g., vector extensions), the recent additions
are primarily motivated by security concerns, such as de-
fending unsafe C/C++ code against known attacks. These
extensions introduce new system-level functionality, often
change the semantics of existing instructions, and exhibit
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Figure 1: Complexity growth of Intel x86 CPUs and ISA

complex interactions with other extensions and prior ar-
chitectural features.

We take a detailed look at two of the most complex re-
cent extensions: software guard extensions (SGX, §3) and
control-flow enforcement technology (CET, §4), before
deriving some implications for systems developers and re-
searchers (§5). We argue that these extensions are now
approaching software-like levels of complexity, yet carry
all the attendant drawbacks of a hardware implementation
and the slow deployment cycle that implies. We suspect
that the current path may be unsustainable, and posit an al-
ternative future with the ultimate goal of decoupling new
ISA features from the underlying hardware.

2 Background: x86 extensions
x86 has long been a complex architecture. The 386 refer-
ence manual [18] lists 96 instructions. (Groups of closely-
related instructions, such as varying operand widths, are
counted as they are documented: usually, as one instruc-
tion.) It describes an architecture including segmentation
and paging, 16-bit modes, multitasking support, excep-
tions, co-processing and debug features. Its modern de-
scendants have acquired features such as floating point,
many iterations of vector extensions, crypto accelerators,
64-bit mode, and hardware virtual-machine extensions.

While new instructions add CPU implementation com-
plexity [27], past system designers could, for the most
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Table 1: Summary of recent Intel x86 ISA extensions
Year of Instructions Other ISA changes

Extension spec launch new chg. (excl. feature test bits, XSAVE/VMCS context)

SMEP Block kernel exec. of user pg. 2011 2012 0 0
RDRAND Hardware random numbers 2011 2012 1 0
FSGSBASE FS/GS access instructions 2011 2012 4 0
AVX2 256-bit vector ops. 2011 2013 30 0 wider vector registers
INVPCID Tagged TLB invalidation 2011 2013 1 0
VMFUNC VM optimisations 2011 2013 1 0
TSX Transactional mem. 2012 2013a 4 0 2 new instr. prefixes, transaction aborts
ADX Arbitrary-precision arithmetic 2012 2014 2 0
RDSEED Hardware random numbers 2012 2014 1 0
PREFETCHW Prefetch memory for write 2012 2014 1 0
SMAP Block kernel access to user pg. 2012 2014 2 0
CAT Cache partitioning 2013 2014 0 0 new model-specific registers
CLFLUSHOPT Optimised cache flush 2013 2015 1 0
XSAVEC/XSAVES/XRSTORS Context switch 2014 2015 3 0
MPX Bounds checking 2013 2015 8 4 new instr. prefix, 7 new regs., bound table
SGX1 Secure enclaves 2013 2015 18 2 mem. access rights, exceptions, . . . (see §3)
PT Processor trace 2013 2015 1 0 9 new model-specific registers, trace buffer
SHA SHA crypto accel. 2013 2016 7 0
CLWB Cache line write-back 2013 1 0
AVX-512 512-bit vector ops. 2013/14 129 0 wider vector registers
SGX2 Enclave dynamic mem. mgmt. 2014 8 0
MPK Protection keys for user-mode 2015 2 0 new register, alters page table format
CET [21] Code-reuse attack defences 2016 10 9 control transfers, new exception, pg. table
a TSX launched with “Haswell” in 2013 but was later disabled due to a bug. “Broadwell” CPUs with the bug fix shipped in late 2014.

part, ignore such changes. Vector extensions (MMX,
SSE, and AVX) added data processing instructions, and
sometimes widened vector registers, but didn’t substan-
tially change systems interfaces. With the notable excep-
tion of 64-bit mode and virtualisation extensions, OS de-
velopers on x86 were occasionally given tweaks to im-
prove performance (e.g., fast system calls) or correct glar-
ing shortcomings (e.g., user-mode access to FS/GS regis-
ters, and TLB tags for non-VM address spaces) but oth-
erwise ignored [29]. Even 64-bit mode didn’t substan-
tially increase architectural complexity—registers were
added and widened and the page table format changed,
but there were only a handful of new instructions. In-
deed, some features were effectively removed: segmenta-
tion, task switching, and 16-bit modes.

But this has changed. Figure 1 plots the transistor count
of Intel x86 CPU implementations (on a log scale), as well
as the number of words in the Intel architecture software
developer’s manual (on a linear scale). Transistor counts
were sourced from Wikipedia [40]; manuals from vari-
ous sources were counted using pdftotext|wc. The two
data sets are not comparable, but some trends are evident.
First, we see Moore’s Law; the recently-announced slow-
down in Intel’s cadence [36] does not yet appear, and aside
from a recent 22-core Xeon, Intel has stopped publicising
transistor counts. Second is the steady growth, and re-

cent 2015–2016 jump in the general complexity of x86.
The jump is due to extensions introduced with the “Sky-
lake” microarchitecture, and dwarfs even 64-bit mode and
virtual-machine extensions (both added in 2007).

Table 1 summarises x86 ISA extensions specified and
implemented by Intel since the 2012 launch of “Ivy
Bridge” CPUs. For each extension we report the year
of the first public specification, year of first CPU im-
plementation, number of new instructions, number of in-
structions whose behaviour was non-trivially changed,
and any other significant ISA changes. Prior to 2015,
the most complex additions were the AVX2 vector ex-
tensions and TSX transactional memory, both introduced
with 2013’s “Haswell” microarchitecture. TSX was evi-
dently a complex feature to implement—the first imple-
mentation turned out to be buggy, and was later disabled
via a microcode patch—but had relatively low ISA-level
complexity, with only 4 new instructions. Other pre-
Skylake extensions were minor, adding single instructions
or tweaking protection (e.g., the SMEP/SMAP features).

However, Skylake introduces substantial complexity,
including MPX bounds-checking instructions and regis-
ters, the processor trace (PT) feature, and SGX enclaves.
In total, it adds 31 instructions and a raft of associated
changes: new registers, a new instruction prefix, many
new processor-level data structures, changes to page ac-
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cess rights and exception delivery. Other extensions that
Intel has specified but not yet implemented include wider
vectors (AVX-512 and related instructions), additional
SGX features, a “memory protection keys” feature, and
control-flow enforcement technology (CET, §4) which de-
fends against code-reuse attacks. All are included in the
latest architecture manual [22] with the exception of CET,
which has its own 136-page draft specification [21].

What changed to cause this rapid growth? It’s likely
that the explosion in extensions is a deliberate strategy.

Since 2007 Intel’s processors have followed a “Tick-
Tock” development model. Roughly every two years, a
new manufacturing process with smaller transistors was
introduced (a “tick”, or die shrink), followed a year later
by a new microarchitecture on the existing process (a
“tock”). However, the 2014 roll-out of “Broadwell” CPUs
was delayed due to manufacturing problems with the new
14nm process, and in early 2016 Intel settled on a new
three-stage development model for 14nm and beyond [12,
36], before apparently backtracking to announce a fourth-
generation 14nm architecture for 2017 [38].

The slowing pace of Moore’s Law will make it harder
to sell CPUs: absent improvements in microarchitecture,
they won’t be substantially faster, nor substantially more
power efficient, and they will have about the same num-
ber of cores at the same price point as prior CPUs. Why
would anyone buy a new CPU? One reason to which In-
tel appears to be turning is features: if the new CPU im-
plements an important ISA extension—say, one required
by software because it is essential to security—consumers
will have a strong reason to upgrade.

3 Case study: SGX

The new instructions introduced by software guard exten-
sions [19] enable strong isolation and remote attestation
of software enclaves. An enclave is an isolated region of
virtual address space, whose contents are protected from
access by code outside the enclave. In contrast to prior
trusted execution hardware [4, 37], SGX supports secure
multiplexing: any number of distrusting enclaves may run
concurrently, limited only by resource constraints, with-
out relying on a trusted kernel or hypervisor. Neverthe-
less, SGX supports a mostly backwards-compatible en-
vironment for user-mode code. This compelling com-
bination of features, along with strong physical security
(memory encryption), have made SGX attractive to re-
searchers and practitioners alike; in the short time since
SGX-capable CPUs appeared, a wide range of applica-

tions have been devised [e.g., 5–7, 11, 17, 30, 31, 33], and
other vendors are racing to develop similar features [24].

However, SGX introduces substantial complexity: 26
instructions described by nearly 200 pages of En-
glish/pseudocode specification [19]. Much of this derives
from ambitious design goals: protecting enclaves from
malicious privileged software while retaining OS-level
management of physical resources using traditional mech-
anisms (e.g., page tables) to minimise OS changes [29],
yet avoiding the need for trusted software. SGX is
implemented by a combination of memory encryption
hardware, a root of trust (key material) for attestation,
new instructions to manipulate and execute enclaves, and
changes to page access and exception semantics (i.e.,
changes to TLB miss and exception handlers). The SGX
instructions serve as a reference monitor for privileged op-
erations such as changes in the mapping/use of encrypted
pages. Memory encryption operates on a fixed physical
region known as the enclave page cache (EPC), and the
TLB miss handler ensures that each EPC page is acces-
sible only to the enclave that owns it by consulting the
EPC map (EPCM), a table of metadata for every EPC
page (essentially a reverse map). Software has no access
to the EPCM; instead, it is updated by instructions such as
EADD, which initialises a new page and adds it to an en-
clave, or EMODPR/EMODPE, which change permissions
on an existing page. These instructions perform checks to
maintain EPCM consistency and enclave isolation, pre-
venting, for example, EPC double-mapping.

The advantage of implementing memory management
in SGX instructions is that no software must be trusted.
The disadvantage, compared to a simpler primitive such
as a page table, is flexibility: each possible operation re-
quires a new instruction (or set of instructions) to sup-
port it. The first version of SGX supports only enclaves
whose virtual address layout and permissions are fixed
at creation time. This simplifies EPC management, but
practically rules out dynamic loading, and makes dynamic
memory allocation impractical (the program’s maximum
footprint must be allocated up front). SGX version 2 will
add 8 instructions for basic dynamic memory manage-
ment, but still lacks the ability to perform seemingly sim-
ple operations like moving pages or sharing mappings.

SGX’s embedding of memory management in the ISA
further contributes to its complexity. On x86, software
is responsible for maintaining TLB consistency when
changing page mappings by flushing the TLB on rele-
vant cores. In order to achieve this, an OS can synchro-
nise between cores using locked data structures and inter-
processor interrupts. Neither option is available at ISA
level: instructions cannot loop waiting for a lock, nor
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signal other cores. Instead, SGX uses a more complex
scheme whereby software performs the appropriate op-
erations (generally, forcing threads to exit enclaves) and
“proves” to hardware that it has done so using yet more
instructions before it may reuse EPC pages.

The SGX reference [19] devotes almost 20 pages to
documenting its interactions with prior architectural fea-
tures including virtualisation, system-management mode,
inter-processor interrupts, trusted execution technology,
machine checks, and performance monitoring. Besides
the added complexity, some of these interactions lead to
questionable design outcomes. For example, the CPUID
instruction is always illegal inside an enclave merely be-
cause a virtual-machine monitor may have configured it to
trap. Conversely, the user-mode instructions to write the
FS and GS registers are legal inside an enclave, but only
if the host OS has enabled them via a control register bit.

While SGX strives to avoid trusted software, this goal
comes into conflict with the desire for compatibility with
existing OSes: EPC resource management uses normal
paging mechanisms. As a result, enclaves are vulnera-
ble to new “controlled-channel” attacks that stem from
the OS’s ability to induce and observe enclave page
faults [35, 41]. These attacks, which can leak enclave
data, are serious enough to bring the SGX threat model
of a malicious OS into doubt. Perhaps ironically, the best
of the known mitigations exploits a seemingly-unintended
interaction with the transactional memory extension [34]:
transactions abort rather than page fault, so the OS cannot
observe transactional enclave memory accesses.

4 Case study: CET
Control-flow enforcement technology defends against
code-reuse attacks such as return-oriented programming
(ROP). These attacks exploit vulnerabilities in unsafe
code like buffer overflows, but rather than directly inject-
ing executable code, manipulate the program’s control-
flow to execute legitimate instructions in an unintended
context [8]. CET consists of two mechanisms: a shadow
stack, and indirect branch tracking.

At its core, a shadow stack is a straightforward mecha-
nism: on a function call, the processor saves the return ad-
dress on both the regular and shadow stacks. The shadow
stack stores only return addresses, and is inaccessible to
normal code. On a return, the addresses from both stacks
are popped and compared, and an exception raised if they
differ, defeating ROP. The advantage of CET compared
to software implementations of shadow stacks is perfor-
mance, compatibility and security: by modifying the se-
mantics of CALL and RET instructions, no program mod-

ifications are needed, and the shadow stack can be made
easily and cheaply inaccessible to software through the
use of a new page table attribute which protects shadow
stacks from access by regular loads and stores.

CET also includes indirect branch tracking to prevent
misdirection of function pointers: after an indirect JMP or
CALL, an exception is raised unless the next instruction
is a valid programmer-intended branch target, as signified
by a new form of NOP instruction. While this is not full
control-flow integrity [1], it restricts the available gadgets.

CET promises to add strong defenses to unsafe C/C++

code, at the cost of substantial architectural complexity.
Besides a new exception vector, page table attributes, and
model-specific registers, the main complexity arises from
feature interaction. Control transfer in x86 is already very
complex, including many forms of call and return, such as
near and far calls to a different segment or privilege level.
In total, nine instructions (some with many variants, such
as JMP) are modified by CET. In 32-bit mode, tasking fea-
tures mean that jumps or calls to particular segments can
also switch stacks; CET must account for this. In 64-bit
mode, an interrupt can trigger a switch to one of seven
data stacks via the interrupt stack table. Consequently,
CET adds a model-specific register pointing to a table of
seven corresponding shadow stacks. Besides modifying
semantics of all indirect control transfers, CET’s indirect
branch tracking must also handle the case where an excep-
tion occurs after a branch but before the next instruction,
to ensure that an exception can be raised if needed after
any return to user mode or context switch.

5 Implications
Sustainability While we may disagree with some of the
design choices, these features are, individually, clearly de-
sirable. What is concerning is the rate of change, and the
rapid growth in complexity of systems-level features with
complex interactions. As the most stable “thin waist” in-
terface in today’s commodity technology stack, the x86
ISA sits at a critical point for many systems. A faith-
ful implementation of x86 semantics is essential to myr-
iad computing technologies, including x86-compatible
processors, virtual machines, emulators, JIT compilers,
dynamic translators, disassemblers, debuggers, profilers,
and so on. Of course, not every implementation of x86
must immediately implement every new feature, but over
time architectural features stabilise and software gener-
ally assumes their presence. Consider, for example, how
little of today’s software would function on a CPU with-
out a floating-point unit or MMX instructions. Given
this, and particularly given the complex interactions be-
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tween recent features, we have to question whether the
core x86 promise of indefinite backwards compatibility
across many implementations is sustainable.

Timescales Since they depend on deploying new CPUs,
ISA features are slow to be adopted. The original SGX
specification was published in 2013, but the first CPUs to
implement it didn’t ship until late 2015, and at the time of
writing (early 2017) server-class CPUs with SGX support
are yet to appear. The SGX version 2 specification was
published in 2014, but has yet to be implemented. If we
add the delay for sufficient deployment of SGX-capable
CPUs (to achieve, e.g., widespread availability in public
clouds) the end-to-end deployment time for SGX is likely
to approach a decade. This represents a difficult tradeoff

for software developers; prior ISA extensions have also
taken a long time to deploy, but they have generally only
served to accelerate existing functionality; with a feature
like SGX, the developer is faced with a stark choice: wait
indefinitely for security, or deploy now without it.

Hardware is the new software From a careful reading
of Intel patents [23, 28], Costan and Devadas [9, §2.14]
conclude that SGX instructions are implemented entirely
in microcode. This is logical from an engineering per-
spective: EPCM updates are off the critical path, and too
complex to implement in silicon (they involve multi-word
updates and atomic memory accesses). Moreover, a mi-
crocode implementation of SGX allows errata to be cor-
rected by updates. We do not have any reason to believe
that SGX is unique in this respect—increasingly, new ISA
features mean new microcode. Why then, must we wait
so long for them to arrive packaged with a new CPU?

Intel and its peers have always been secretive about the
boundary between microcode and silicon and the capabili-
ties of microcode updates. We argue that it’s time to relax
this secrecy, and work to decouple as much as possible
the implementation of ISA features from the underlying
silicon. This could take two (non-exclusive) forms.

First, CPU vendors could ship microcode updates im-
plementing some new ISA features for prior CPUs. While
we shouldn’t expect that all features can be implemented
this way (some may fundamentally require silicon), nor
that they will perform the same, this could be a viable
path for faster deployment of features, particularly for
complex extensions like SGX. The licensing and revenue
model for such updates remains an open question. On one
hand, we’re used to getting microcode updates for free,
but the availability of new features updates might depress
the market for new CPUs. Like the on-demand upgrades
of the mainframe world, we should probably expect to pay

for new features as if we had paid for new hardware. On
the other hand, a vendor may wish to encourage adop-
tion of a feature by making it freely available on existing
CPUs.

Second, we could extend the architecture to allow soft-
ware below the OS or hypervisor to implement security
features. This would require a privilege level akin to Al-
pha PALcode [14] or RISC-V machine mode [39], but not
a new level of address translation. Such software would
inherently be a part of the trusted computing base, but un-
like microcode would be under user control, and amenable
to inspection and replacement independently of the CPU.

Security A key selling point for many recent security
features, SGX in particular, is that no software is trusted.
Does the implementation of these features in microcode
change this? We argue that microcode is more reliable
than current software, but not as inherently secure as we
might assume. First, microcode, whose updates are en-
crypted and signed, is much harder than software for an
attacker to modify. Second, CPU vendors have a strong
track record of testing. Intel is secretive about their valida-
tion processes, and the cost of failure can be much higher
than software bugs, but what is known suggests that there
is extensive (but certainly not exhaustive) testing [3, 32].
For SGX, Intel has also published the formal verification
of a high-level model using an SMT solver [15, 20], and
verified the linearisability of a (different) model of con-
current SGX operations [26]. These are important guar-
antees, but there is no known correctness proof for the
implementation, which remains secret.

Ultimately both microcode and the underlying hard-
ware remain opaque, and with ever-increasing complex-
ity, it behoves us to search for ways to improve our con-
fidence in their security. There is one way software can
exceed microcode standards of correctness: formal ver-
ification of high-level security properties [16, 25]. Re-
cently, Sanctum [10] showed how to implement SGX-like
functionality in software for RISC-V; this addresses some
of the implementation complexity and side-channel prob-
lems of SGX, but leaves open the question of trust, which
we are presently tackling through formal verification.

6 Concluding remarks
The growth rate of ISA features is concerning, but has po-
tential upsides for systems research. For one thing, new
features (e.g., TSX, MPX, SGX, and PT) have tradition-
ally heralded a slew of publications exploring their pos-
sibilities, and we see no reason for this to stop. Like the
use of transactions to mitigate SGX control channels [34],

5



unanticipated interactions between ISA features will lead
to the discovery of new techniques. For another, Intel
and its peers are likely to be more receptive to imple-
menting ideas from the research community. Finally, ris-
ing complexity leads to many familiar systems problems:
managing complexity and feature interaction, maintaining
legacy compatibility while enabling architectural evolu-
tion, adapting (in software, perhaps on the fly) to a hetero-
geneous set of hardware features, and isolating developers
from optimisation trade-offs; systems researchers will find
new applications here. We should also renew our efforts
to design hardware primitives that software can use to im-
plement the features that today become ISA extensions.

More broadly, now more than ever before [2, 13] it’s
time to rethink the notion of an instruction set. It’s no
longer the boundary between hardware and software, but
rather just another translation layer in the stack.
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