
Core slicing: closing the gap between leaky confidential VMs and bare-metal cloud

Ziqiao Zhou∗ Yizhou Shan† Weidong Cui∗ Xinyang Ge∗‡ Marcus Peinado∗ Andrew Baumann∗§

∗Microsoft Research †University of California, San Diego

Abstract
Virtual machines are the basis of resource isolation in today’s
public clouds, yet the security risks of entrusting that isolation
to a cloud provider’s hypervisor are substantial. Such concerns
have motivated hardware extensions for “confidential VMs”
that seek to remove the hypervisor from the trusted computing
base by adding a highly-privileged firmware layer that checks
hypervisor actions, and supports memory encryption and re-
mote attestation. However, the hypervisor retains control of
resource management and observes associated guest actions
including nested page table faults and CPU scheduling, and
thus confidential VMs remain vulnerable to an ever-changing
variety of hypervisor-level side channel attacks. Bare-metal
cloud servers avoid such leaks, but remain a niche due to the
high cost of dedicated hardware.

We observe that typical cloud VMs run with a static allo-
cation of memory and discrete cores, and increasingly rely
on I/O offload, thus negating the apparent need for a hypervi-
sor and the fragile hypervisor/guest isolation boundary. Our
design, core slicing, enables multiple untrusted guest OSes
to run on shared bare-metal hardware. To ensure isolation
without the complexity of virtualization, we propose simple
hardware extensions that restrict guests to a static slice of a
machine’s cores, memory and virtual I/O devices, and del-
egate resource allocation to a dedicated management slice.
We demonstrate practicality and evaluate performance with
prototypes for RISC-V and x86.

1 Introduction

We are in the early stages of a new generation of trusted ex-
ecution environment (TEE). Motivated by cloud workloads,
their main new feature is the ability to run “confidential VMs”
inside the TEE [13, 17, 53]. Driven by the demand for secure
cloud computing in which the user need not trust the cloud

†Yizhou Shan is now at Huawei Cloud.
‡Xinyang Ge is now at Databricks.
§Andrew Baumann is now at Google.

provider [78], these TEEs are expected to see much wider
adoption than their predecessors [50]. Although confidential
VMs offer enhanced functionality, their security model and
architecture are largely identical to earlier TEEs such as SGX.
The user shares one or more processor cores with a powerful
adversary who controls hardware resources. Processor exten-
sions provide the TEE with private memory and a trusted
“context switch” to prevent the administrator-adversary from
directly breaking the confidentiality and integrity of the TEE.

However, the past decade has produced a broad and rapidly
growing spectrum of attacks on this model [22, 25, 41, 44,
62, 65, 67, 68, 72, 82, 90, 98, 104, 110, 112–116], including
the complete breakdown of SGX security on several occa-
sions [112, 114, 115]. Most of these can be described as side-
channel attacks. As §2.3 will describe, they take advantage
of the fact that attacker and victim run on the same core and
share a multitude of sometimes obscure microarchitectural
components. The same risks [39, 44, 67, 68] exist in confi-
dential VMs. Although today’s confidential VM architectures
remove privileges from the host hypervisor (e.g., the ability
to read plaintext guest memory), it retains a large degree of
control over guest execution, such as the ability to arbitrarily
interrupt guests, leading inexorably to side-channel attacks.

It is this paper’s thesis – backed by evidence from recent
work on computer architecture [31, 96, 97] and security [60]
– that these failures of TEE hardware are not isolated events
of the past. More than a decade of microarchitectural opti-
mizations have taken processor complexity to a level where
it is practically impossible to reason about isolation bound-
aries within a core [60, 96]. This problem is not only the
likely ultimate root cause of the known attacks, but it is also
bound to result in periodic breakdowns of TEE security for
the foreseeable future. Indeed, Intel takes the position that
side channels “can’t be eliminated” [48, 51, 56] but that it will
provide mitigations as new vulnerabilities are found. While
similar to the current approach to software vulnerabilities,
this expects the users of confidential cloud computing (e.g.,
financial institutions and governments) to tolerate data leaks
whenever a new side channel is discovered.

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 1



In this paper, we present a much more robust TEE archi-
tecture, core slicing, that is realistic for infrastructure-as-a-
service (IaaS) workloads. Rather than making confidential
guests share cores with an adversarial hypervisor, we give the
guest exclusive access to its own CPU cores. This moves the
isolation boundary to the much more defensible and robust
one between processor cores. We show that this boundary can
be enforced with simple (and thus less fragile) hardware.

We observe that, although cloud guests may benefit from
a VM-level execution abstraction, cloud providers do not ex-
ploit the full complexity enabled by hypervisor-based virtual
machines for IaaS workloads. For example, although hypervi-
sors support time-slicing VMs on shared cores, VMs offered
by major public cloud providers including Amazon [11] and
Azure [81] are sized at core granularity and scheduled on
distinct physical cores [7, 76, 77]. Likewise, the memory
allocated to guest VMs is static; techniques such as mem-
ory ballooning [118] or transparent page sharing [118, 124]
are avoided. Cloud providers are also moving to reduce the
overhead of I/O virtualization by offloading I/O processing
to dedicated hardware [5, 8, 36]. To ensure that resources
sold match those available, cloud providers limit oversub-
scription to only their own (first-party) VMs [28] or disable
it entirely [7]. Overall, although today’s cloud runs virtual
machines, leading public cloud providers do so using an effec-
tively static allocation of cores and memory. The hypervisor is
relied upon for isolation, but it does so merely by partitioning
platform resources.

By giving the guest exclusive access to CPU cores, core
slicing eliminates the potential for the entire class of side
channels where the attacker shares per-core microarchitec-
tural resources with its victim. Moreover, we enforce this
isolation boundary with a new hardware mechanism that is
self-contained and simple enough to permit reasoning about
confidentiality and integrity. Fully isolated guest OSes (or,
potentially, guest hypervisors) run in their own slice of a ma-
chine. Each slice consists of a dedicated, static allocation of
cores, memory, and directly-assigned I/O devices (e.g., the
virtual functions of network and storage controllers); hard-
ware ensures that the cores of a slice are sequestered such
that they have no access to memory or I/O devices outside
the slice, nor can they interrupt cores of other slices. Because
only a single guest runs code on any given core, a huge class
of microarchitectural side-channel leaks are out of scope, and
continued innovation in complex microarchitectural perfor-
mance optimizations is unhindered, since those cannot impact
the TEE isolation boundary. While core slicing eliminates
intra-core leakage, it does not prevent cross-core side chan-
nels such as CrossTalk [91] which will have to be addressed
by other means. Nevertheless, we believe that obviating intra-
core channels removes by far the largest and most serious
part of today’s side channel problem in terms of the number
and seriousness of known attacks, granularity of sharing, and
number of shared components.

Resource allocations are determined by a slice manager
that runs on a dedicated core (ideally, a separate low-power
processor), and is responsible for starting and stopping slices,
but is otherwise untrusted by the guest. Guest kernels (or
guest hypervisors) are enlightened if necessary to run within
a slice, ensuring that they attempt only access to those named
resources available to them. For example, a guest cannot as-
sume that physical memory starts at address 0, nor that pro-
cessors have contiguous IDs; in practice, modern kernels
including Linux make no such assumptions, and it suffices to
pass boot-time information on the accessible resources.

In the following §2, we elaborate on the security risks of
confidential VMs, and explore the way VMs are deployed in
the cloud today. Like Keller et al. [58] over 10 years ago, we
find that hypervisors add significant needless complexity to
the cloud’s trusted computing base. However, their system No-
Hype [107] did not protect VMs from the (fully trusted) cloud
provider and relied on virtualization hardware to enforce iso-
lation. The numerous attacks demonstrated since [31, 62, 97]
showed that the security provided by this hardware is frag-
ile [62, 96]. By contrast, core slicing maintains a strict separa-
tion between core processor logic that is performance-critical
and thus complex, and the hardware that enforces isolation,
which is not performance critical and simple. It also permits
guests to run their own bare-metal hypervisors.

To grant guests bare-metal access to cores in a shared ma-
chine while still securely isolating them from one another
raises a key design challenge: without a more privileged
software layer on the core, what can enforce isolation? The
key insight behind our design is that simple hardware tech-
niques used to enable trusted execution features such as secure
boot and remote attestation for an entire system [127] can be
adapted and applied at the granularity of individual cores to
help resolve this dilemma. Specifically, §3 contributes lock-
able filter registers and a core-local secure reset mechanism,
and describes how they can be used to enable core slicing.

To test the practicality of our design, we build two pro-
totypes. The first (§4) leverages RISC-V physical-memory
protection (PMP) registers [93, §3.6] to run multiple isolated
Linux slices. The other x86-based prototype (§5) lacks secu-
rity but enables an evaluation (§6) showing that core slicing
offers bare-metal performance without VM overheads, with a
substantially smaller TCB, while closing side channels based
on caches, page faults [128], and other intra-CPU resources.
We also analyze traces from a public cloud to find that we
can allocate physically-contiguous slice memory, and confirm
that our extensions add minimal hardware cost to an existing
design. Finally, §7 outlines a path to applying our design to
more mainstream architectures, §8 covers related work, and
§9 concludes.

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 2



2 Background and motivation

2.1 Hardware-accelerated virtualization

Since VMware first demonstrated the value of virtual ma-
chines on commodity platforms [23], hardware vendors have
added features to progressively reduce the overhead of virtu-
alization. Although first-generation VM hardware suffered
poor performance [1], the gap closed to the point where to-
day’s cloud platforms rely fully on hardware support for CPU
virtualization, with features such as nested paging and vir-
tual APICs ensuring that many guest VMs now run with low
(<5%) CPU overhead compared to bare-metal execution [2].
Unfortunately, this is not true of all VMs; a recent study by
Teabe et al. [108] found that up to 30% of CPU time was
consumed by virtualization overheads on memory-intensive
workloads, even when using nested address translation with
huge pages. Other studies reported similar or worse address
translation overheads (even with huge pages) [3, 37, 88].

Besides CPU features, modern hardware also supports effi-
cient virtualization of I/O, through advanced IOMMUs [12,
49] and single-root I/O virtualization (SR-IOV) devices [32,
63]. These enable low-overhead virtual I/O by permitting a
single physical I/O adapter (such as a network interface or
storage controller) to export multiple virtual PCI functions.
These are configured by a hypervisor and assigned to guest
VMs by installing appropriate IOMMU translations and in-
terrupt mappings. A guest OS thus interacts directly with
the device, without the software overhead of traditional I/O
virtualization [117]. The hypervisor’s role is reduced to con-
figuring the virtual devices and mapping them to the guests, a
slower (control path) operation generally performed at startup.

2.2 Confidential VMs

Notwithstanding attempts to reduce the size or attack surface
of cloud hypervisors [27, 66, 105, 107, 121, 125], the cloud’s
trusted computing base is controlled by cloud providers
and opaque to its users. Threats such as supply-chain at-
tacks [85] and rogue employees (e.g., cloud administrators
and developers) have alternatives to traditional cloud architec-
ture [55, 106, 126]: new architecture extensions such as AMD
SEV-SNP [13, 78], Intel TDX [53] and Arm Realms [17] seek
to remove the hypervisor entirely from the guest’s TCB by
extending the approach of earlier user-level TEEs such as
Intel SGX [50]. In these designs, guest memory and register
context are encrypted by hardware, and resource management
actions of the hypervisor, such as mapping of memory to the
guest, are checked for consistency with the expected VM state.
This prevents, for example, a compromised hypervisor from
interfering with a guest’s memory layout. Finally, like other
trusted computing technologies, these designs include a hard-
ware root of trust with support for remote attestation of the
guest VMs, enabling a cloud user to verify that their VM has

been correctly launched before trusting it with any secrets.
While the various architectures share many similarities,

they differ in the trusted components that check hypervisor
operations and enable remote attestation. In AMD’s design,
these are delegated to firmware on a separate platform secu-
rity processor, whereas in the Intel and Arm designs these
are performed by trusted and attested software running on
the CPU itself. Regardless of where it runs, the relevant
firmware/software must be trusted by both host and guest,
and although it is simpler than a full hypervisor, that is hardly
a guarantee of correctness. Notably, AMD’s firmware (the
only one of the three to have reached production) has already
suffered serious vulnerabilities [13, 14, 24, 26].

2.3 Side channels in processor-based TEEs

Because confidential VMs inherit from SGX the key design
feature of a privileged attacker who controls resources and
shares processor time with the TEE, we expect them to remain
vulnerable to many forms of side-channel attacks similar to
those that devastated SGX [112, 114, 115].

Several attacks have demonstrated that the processor’s ad-
dress translation mechanism can be used to extract informa-
tion such as cryptographic keys, text documents or JPEG
images from SGX enclaves [101, 111, 128]. In these attacks,
the adversary manipulates or simply monitors page tables to
observe addresses accessed by the victim. While these attacks
were demonstrated for SGX, it is clear that they carry over to
TEEs like AMD SEV where the attacker controls nested page
tables and handles nested page faults.

Other transmission channels include processor caches [22,
41, 82], branch prediction hardware [65] and interrupt la-
tency [90, 113]. Some of these attacks generalize not only
beyond SGX but also beyond TEEs. These channels also
form the basis for tools that allow the adversary to single-step
instruction-by-instruction through the enclave code [110] and
to replay TEE instructions arbitrarily many times without hav-
ing to rerun the TEE code [104]. Both techniques generalize
beyond SGX, as they only require the adversary to control
address translation and interrupts, respectively.

Speculative execution attacks have been used to leak infor-
mation across all x86 isolation boundaries, including virtual
machines and SGX [25, 62, 72, 98, 112, 114–116]. For exam-
ple, Foreshadow [112] results in the disclosure of the entire
enclave memory and the processor’s SGX attestation key.
To mitigate such attacks, confidential VMs rely on the same
basic approach as SGX: microarchitectural tweaks and mi-
crocode patches to the “context switch” path between TEE
and host code. More recent research demonstrates that side
channels remain a problem on AMD SEV, including SQUIP
attacks [39] via scheduler queues within the same CPU core;
CipherLeaks [68] via online encrypted memory analysis; and
attacks via hypervisor-observable nested page faults [44, 67].
By contrast, core slicing avoids the shared core resources,

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 3



the online memory access from other security domains (i.e.,
slices), and the hypervisor.

2.4 VMs as used in public clouds
We next look at how VMs are deployed in clouds today, focus-
ing on infrastructure-as-a-service platforms, which offer VMs
backed by guaranteed resources (CPUs, memory, and in some
cases accelerators and I/O bandwidth). We consider Ama-
zon EC2 and Microsoft Azure, as they collectively represent
60% of the worldwide IaaS market [38]. We do not consider
non-IaaS workloads such as serverless or micro instances for
which core slicing may be a poor fit.

VMs are allocated at core granularity. Despite offering
a plethora of different VM sizes [11], all current-generation
VMs in Amazon EC2 occupy at least an entire core (i.e., two
vCPUs on platforms that support hyperthreading), and Ama-
zon states explicitly that host cores are “pinned” to specific
guest vCPUs and are not shared across guests [7]. Microsoft
Azure also offers a wide range of VM configurations [81].
Like Amazon, Azure does not oversubscribe customer vCPUs:
Cortez et al. [28] note explicitly that their system will “only
oversubscribe servers running first-party workloads.”

For both providers, burstable VMs [10, 80, 119] represent
the main special case as far as CPU allocation is concerned.
These VM types are optimized for workloads that are mostly
idle, with only occasional bursts of CPU activity. Like all
cloud VMs, they have a fixed number of vCPUs, but consume
on average only a fraction of their vCPU allocation in physical
CPU runtime. Thus, of all the VM types offered across EC2
and Azure, burstable VMs are the only type that fundamen-
tally requires the use of a hypervisor to perform time-slicing,
in order to account for the VM’s actual CPU utilization, and
(presumably) to benefit from sharing CPUs across burstable
VMs. All other VMs have a guaranteed allocation of physical
CPUs, and for these the cloud provider derives no obvious
benefit from hypervisor time-slicing.

Virtual I/O is becoming fully offloaded. Cloud vendors
have deployed dedicated hardware “cards” that replace soft-
ware I/O virtualization stacks, exposing virtual devices to
guests directly via SR-IOV. For example, Amazon Nitro [5, 7]
and Azure AccelNet [36] enable low-overhead networking.
EC2 also supports direct access to NVMe storage [8], and
Azure supports SR-IOV for InfiniBand and GPUs [57]. It thus
seems reasonable to assume that, in the near future, the only
I/O devices that are still emulated by host software will be
those that are not performance sensitive, such as the virtual
serial port or console device used for debugging.

Advanced VM features are not needed. Cloud providers
rely on VMs to isolate tenants, but make little to no use of

the advanced features enabled by full virtualization. Some
features are incompatible with the IaaS model of dedicated
resources. For example, a customer paying for a VM with
16 GiB of RAM has no incentive to enable memory balloon-
ing [118] and return unused memory to the hypervisor. Other
features, such as transparent shared page detection [118, 124],
are disabled because of their significant security risks in a mul-
titenant cloud [86]. Cloud providers may use live migration
to update host software [129], but this has significant perfor-
mance impact and hot patching is often preferred [9, 79]. We
will discuss this further in §3.4.

Bare-metal clouds. Although the bulk of IaaS cloud work-
loads run in virtual machines, there is also a sizable and
growing market for bare-metal cloud servers that offer dedi-
cated machines at a premium price. The three primary reasons
for a customer to choose a bare-metal instance over a VM
are: (a) to avoid the CPU overhead (“virtualization tax”) for
memory-intensive workloads (described in §2.1), (b) a need
for predictable performance without any possible contention
from other co-located VMs (or “noisy neighbors”), or (c)
security/compliance concerns arising from a shared hyper-
visor [92]. Customers that need to run their own hypervisor
may also choose bare-metal servers to avoid the substantial
performance overhead of nested virtualization [20, 70]. Core
slicing seeks to offer similar features at flexible granularity
and consequently lower cost.

2.5 Summary

We see that the bulk of IaaS VMs deployed in public clouds to-
day run with a fixed allocation of memory and discrete cores,
with I/O that is or soon will be fully offloaded, and have little
to no use for features of virtual machines except for isola-
tion. At the same time, CPU vendors are adding substantial
complexity (not to mention, security risks and performance
overhead) to their designs to support confidential VMs. We
ask the question: since the resources assigned to cloud VMs
are effectively static slices of a machine, rather than relying
on complex software to check the actions of a hypervisor that
is not expected to do anything at VM runtime, why not enforce
those partitions in hardware?

3 Design

We describe the design of core slicing, starting with its overall
architecture and threat model, before detailing our proposed
hardware mechanisms, and how those mechanisms can be
used by system software under the control of the host to
securely partition hardware among untrusted guests.

Our design goals are as follows:

1. Partition shared hardware at natural boundaries, such

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 4



Figure 1: Core slicing system architecture.

as whole cores, while relying only on simple, easy-to-
implement hardware mechanisms to ensure isolation.

2. Keep the trusted computing base small and simple, to
permit a formally-verified implementation.

3. Support memory encryption and remote attestation fea-
tures equivalent to confidential VMs.

3.1 Overview and terminology
Rather than VMs, we partition a machine into multiple guest
slices, as shown in Figure 1 (denoted as sliceU). Each slice
consists of a distinct set of named hardware resources: cores,
memory ranges, and (virtual) I/O devices. Those resources
are allocated exclusively to a slice for the duration of its
execution. In the case of cores, this means that guest code
runs in the highest privilege level (e.g., hypervisor mode), and
controls every CPU cycle executed on that core until the slice
is terminated. Like VMs, slices may start or stop at any time,
and resources that were allocated together in one slice may
later be partitioned among distinct slices after the first slice
terminates. The key invariant is: at any given time no two
slices may share access to the same resource. This avoids the
need for any hypervisor-level mechanisms to share resources
between guests, such as time-slicing VMs on a shared core or
demand-paging overcommitted memory.

To allocate resources and manage the lifetime of guest
slices, we rely on a distinguished control slice (termed slice0)
running a slice manager. Somewhat like the host domain or
root partition of a hypervisor, the slice manager is started at
boot, and is responsible for creating and destroying user slices
and determining their resource allocations. The slice manager
runs on a core dedicated to that purpose, ideally a low-power
management processor, potentially even on a separate chip as
in Amazon’s Nitro system [7]. We do not assume that the slice
manager shares memory cache-coherently with user cores, nor
that it executes the same instruction set. The slice manager

software is further divided into a small, privileged portion,
the slicevisor, that must be trusted by both cloud guests and
the host, and a larger, unprivileged portion, that need not be
trusted by guests. The unprivileged slice manager cannot in-
terfere in the execution of a guest slice except for terminating
it and resetting its cores. The slice manager maintains an idle
slice to account for any unused resources. Cores in the idle
slice do not execute, and merely wait to be assigned to a user
slice.

To isolate resources, we rely on a new hardware mechanism,
lockable filter registers, that restricts access to resources from
a given core. Once configured and locked, these registers are
read-only until the core is reset via another new mechanism,
core-local secure reset. We require that it be restricted so that
only the slicevisor can initiate a reset. A trusted loader, the
sliceloader, is the first code to execute after a reset.

3.2 Security properties and threat model
Core slicing offers strong security, eliminating interference
between all slices (including the control slice). Specifically:

1. The resources assigned to a slice are static from its cre-
ation until its termination.

2. A slice cannot access memory outside the slice, neither
from cores nor via DMA.

3. A slice cannot interrupt cores outside the slice.

4. A slice cannot access I/O devices outside the slice.

5. Only slice0 may terminate another slice or reset its cores.

The threat model for core slicing is comparable to other
forms of trusted computing including confidential VMs and
enclaves [29, 35, 64]. The host (cloud provider) and guests
(cloud users) are mutually distrusting, with one caveat: a guest
relies on the host to provide agreed resources (thus, denial
of service is out of scope), but can check at runtime that suf-
ficient resources (e.g., as many hardware cores as expected)
are available. The cloud provider trusts the management stack
executing in the control slice, which determines both which
specific resources (CPU cores, memory, etc.) a guest is per-
mitted to use, and for how long it executes.

Guests must trust only hardware, the slicevisor, and the
sliceloader. The slicevisor ensures that resource allocations
are disjoint (for example, that none of the memory allocated to
a guest slice is ever shared with another slice) and configures
hardware protection mechanisms accordingly. The slicevisor
is also responsible for attesting guest slices, and forms part
of the attestation root of trust. The sliceloader ensures that
lockable filter registers are properly configured and locked
before transitioning control to guest code on each core of a
slice.

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 5



Core slicing provides substantially stronger protection from
side-channel attacks than confidential VMs. Because slicing
partitions a machine at core granularity, the only side channels
possible are those that can be observed from another core;
notably, side-channel leaks to sibling hardware threads or to
a malicious hypervisor are impossible.

Hardware security features including memory encryption
and cache partitioning are orthogonal to our design; if present,
they allow us to strengthen the defenses against physical and
cross-core side-channel attacks respectively.

3.3 Hardware support for core slicing

Recall that our goal is to partition shared hardware at core
boundaries while relying only on simple hardware mecha-
nisms to ensure isolation. To keep this hardware simple, a
key choice we make is to expose the underlying physical re-
sources directly to guest software. Specifically, a guest slice
may not have access to all cores or physical memory of a
machine, but the identifiers it uses (i.e., the processor IDs
and physical addresses) for the resources to which it does
have access are always those of the underlying hardware. The
only role of our hardware extensions is to restrict the set of
accessible resources on a per-core (and thus, per-slice) basis.

This design choice avoids the need for any additional trans-
lation layers (as in virtualization) but it does place some
requirements on guest software (i.e., OSes or hypervisors).
Specifically, guests must be able to run with non-contiguous
processor IDs, and cannot assume that physical memory starts
at any particular address (such as zero). Luckily, modern OSes
already meet this requirement: the initial OS boot image is
a position-independent binary that uses a well-specified data
structure (either ACPI tables [109] or a devicetree blob [71])
to locate all accessible resources, including memory ranges
and additional processors. As long as this boot-time data struc-
ture accurately describes the resources accessible to a slice, a
correct guest will make no attempt to access other hardware,
and it is sufficient to treat any illegal accesses as fatal.

We therefore require a hardware mechanism that can re-
strict access to named physical resources (physical addresses
for memory and I/O, and processor IDs for inter-processor
interrupts). However, by design, guest software running in a
slice should be able to use the highest privilege level on those
cores, which raises a conundrum: how can we configure these
restrictions without a slice being able to change them?

Our solution borrows from a pattern seen in hardware sup-
port for trusted execution: we introduce lockable filter reg-
isters that restrict the accessible resources by all software
(including the most privileged) running on a given core. Once
configured and locked, these registers are read-only until a
subsequent core-local secure reset regains control of the core
from the slice. Similar lockable registers (sometimes referred
to as “latches”) have been used to implement hardware secu-
rity mechanisms such as secure boot and attestation for an

entire system [127]. To our knowledge, we are the first to
propose such a technique at the granularity of a single core.

At a hardware level, our proposed secure reset mechanism
is just a subset of the existing system-wide reset function-
ality, exposed separately at core granularity: it stops execu-
tion, resets the entire core to a well-defined architectural state
(resetting locked registers), and causes the core to begin ex-
ecution at a fixed address. The unique constraints we place
on this mechanism are that (a) only the slicevisor running in
the control slice’s privileged mode can initiate such a reset,
and (b) the address of the jump target that receives control
after reset remains inaccessible to any user slice. Here, we
host the sliceloader, a small piece of trusted code similar to a
secure bootloader that will reassign the core by programming
and locking its filter registers before transferring control to
untrusted user code, or taking it offline as part of the idle slice.

We next describe how hardware filters enable slicing of
each distinct resource (memory, interrupts, cache, and I/O).

Memory To prevent a core from accessing any memory
outside its slice, we rely on lockable memory range registers
that restrict physical memory accesses by a core. Although
we leave the precise semantics of these registers, such as the
number of ranges and any alignment/size constraints, up to
hardware designers, we assume that they can be configured in
such a way as to restrict access to at least one contiguous range
of RAM for a slice, as well as any virtual I/O devices (e.g.,
network and storage controllers) assigned to the slice, and
any other memory-mapped registers (such as a local interrupt
controller or timer) that are necessary. The minimum number
of range registers is thus platform-specific, but we anticipate
that around 10 ranges per core will generally suffice. More
ranges will permit the slice manager greater flexibility in
memory allocation, especially on multi-socket systems with
non-uniform memory, but comes with a small but non-zero
cost in additional hardware resources.

Range checks are trivially parallelizable and can be applied
before installing a page translation in the TLB, thus hav-
ing negligible runtime overhead. By contrast, virtualization
relies on a nested page table which not only requires addi-
tional memory, it also increases page translation overhead and
TLB pressure [3, 37, 88, 108]. However, because a slice is
restricted to discrete physical ranges, its memory cannot be
allocated in arbitrary pages, but instead must occupy a limited
number of contiguous physical regions. We will evaluate the
impact of this constraint on memory fragmentation in §6.4.

Interrupts We require hardware support to prevent a slice
from sending inter-processor interrupts (IPIs) to cores outside
its slice. Luckily, the address space of processor identifiers is
substantially smaller than memory addresses, so we propose
to use a lockable IPI destination mask register in preference
to range checks. This register, which may in reality consist of
a number of consecutive model-specific registers (e.g., four

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 6



64-bit registers for an 8-bit processor ID), permits a slice to
run on any combination of cores. Of course, most workloads
will benefit from adjacent cores (and caches).

Cache By design, any state internal to a core including the
L1 cache is never shared across slices. However, shared L2
or L3 caches may raise performance interference and security
concerns around cache-based side channels. To mitigate these,
core slicing can make use of existing hardware support for
cache partitioning [84], as long as the relevant configuration
registers can also be locked or otherwise restricted.

I/O devices As described in §2.1–2.4, SR-IOV has been
deployed by cloud providers to allow VMs to directly access
networking, storage, GPUs, and more at no overhead. Just as
the virtualization host OS assigns virtual functions to VMs,
slice0 configures and assigns virtual functions to slices.

I/O devices interact with software in three ways: memory-
mapped registers, direct memory access, and interrupts; all
three require a suitable access control mechanism. Access to
memory-mapped I/O is restricted by the same range checks as
regular memory, and we do not discuss it further here. How-
ever, we need a way to prevent a slice from initiating DMA
transfers to any memory outside its slice. Such restrictions are
typically implemented by an IOMMU [12, 49], and typical
IOMMU functionality suffices for core slicing, as long as the
IOMMU remains under the control of the slicevisor.

One simple approach is to configure the IOMMU to map
accessible slice memory 1:1 for each virtual function belong-
ing to a slice. Its main downside is security: all memory
assigned to a slice is available for DMA. This does not com-
promise slice isolation, but, like a bare-metal system without
an IOMMU, it may allow a buggy device driver to access
the wrong guest memory. Rather than reprogramming the
IOMMU at runtime to restrict DMA, recent work found that
it is more efficient to simply allocate all I/O buffers from a
dedicated pool of physical memory that remains mapped in
the IOMMU [74]; this is naturally supported by core slicing,
and avoids the need for runtime interaction with slicevisor to
reprogram a slice’s IOMMU translations.

Besides DMA, an I/O device also sends interrupts. The
interrupts of virtual functions are mapped and routed to host
cores by the IOMMU, and the same mechanisms apply di-
rectly to core slicing. Since slice cores are statically assigned
and there is no host hypervisor, direct interrupt mapping is
substantially simpler than VMs [40].

One unique challenge of SR-IOV is that virtual functions
do not implement normal PCI configuration space registers.
Rather, a hypervisor typically emulates configuration space
accesses for an assigned virtual function. For slices, we could
rely either on an enlightened guest to avoid the need for such
virtualization (as in our x86 prototype, see §5), or else on a
custom PCI “card” [6, 36] to emulate a standard memory-
mapped configuration space within its own device window.

3.4 Slice management

We now turn our attention to the slice0 software stack respon-
sible for resource allocation, slice lifetime, and a handful of
runtime services. This may run on a dedicated host core, a
low-power management core, or a separate SoC. We require
only that it (a) has hardware privilege separation, (b) is able
to trigger secure resets of guest cores, and (c) shares some
memory, not necessarily cache-coherently, with those cores.

Recall that only the privileged portion of the slice manager,
the slicevisor, is trusted by guest slices. The unprivileged
slice manager has no access to guest slice memory or cores.
The slicevisor implements all security-sensitive aspects of the
process of creating, starting, stopping, and deleting a slice. Its
primary role is to ensure that no resource is ever accessible
to two slices at the same time; this includes checking that
memory ranges assigned to slices are disjoint, and ensuring
that all cores of an expired slice have been stopped via a
secure reset prior to reassigning any resources of that slice.

To keep the slicevisor as simple as possible (and permit its
eventual implementation in formally-verified code), it does
not directly allocate resources, but merely checks the correct-
ness of resource assignments provided by the unprivileged
slice manager. This permits the unprivileged slice manager to
implement flexible policies to choose the memory ranges and
cores assigned to slices, without the need to trust them.

The only other code that must be trusted by guests is the
sliceloader which is the first thing to run after a core is reset
by the slicevisor. It is responsible for configuring and locking
the per-core access filters, and then coordinating with other
loaders of the slice to securely boot the guest OS. To do this, it
relies on a slice table of configuration information maintained
by the slicevisor (and inaccessible to untrusted software).

Starting a guest To create a slice, the unprivileged slice
manager assigns available cores and memory, and determines
the configuration of virtual I/O devices. Next, it invokes the
slicevisor to create the slice, which rejects the request if the
new slice includes any resource shared with another slice
(including slice0), other than the idle slice. Otherwise, the
slicevisor updates the slice table, programs devices to con-
figure virtual functions, and updates IOMMU translations as
described earlier. At this stage, the assigned cores remain idle.

To start the new slice, the slicevisor resets the relevant cores,
which causes them to execute the sliceloader and follow a
secure boot flow. After reading the relevant configuration
from the slice table (recall that at this point the sliceloader is
trusted and has unrestricted access to system memory), the
loader determines whether the current core belongs to the
idle slice or a new guest slice. It then programs and locks
the core’s access filters for memory ranges and IPIs, before
synchronizing with the loaders (if any) for other cores in the
slice. The rest of the boot process has no access to memory or
cores of other slices. It zero-fills slice memory ranges, before

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 7



copying the guest’s boot image and transferring control.

Terminating a guest Unless they are unresponsive, guest
OSes will generally execute a controlled shutdown initiated
via an out-of-band signal. To finally terminate a slice, the
slice manager invokes the slicevisor which clears the relevant
configuration in the slice table. Then, to stop the guest cores
(which no longer have access to the slice table), the slicevisor
reassigns them to the idle slice and resets them.

Auxiliary services At runtime, the slice manager exposes a
simple shared memory device (much like a virtual I/O device)
to guest slices, permitting an enlightened guest OS driver to
initiate a shutdown or reset of the slice, or access slow-path
emulated I/O devices (such as a virtual serial port and console)
for which no offload device is warranted.

Unsupported features The functionality of a guest slice
is similar to bare-metal clouds, and lacks advanced VM fea-
tures such as live migration. This does not preclude a guest
from implementing its own mechanisms (e.g., by running its
own hypervisor, or doing so at process level [34]), but it does
prevent a cloud provider from transparently migrating guests
to implement software upgrades [129]. Since core slicing es-
chews the use of a hypervisor and runs the entire host stack
on a dedicated management core, we do not anticipate that up-
dates will require live migration. In particular, we expect that
it will be possible to update the slice manager and slicevisor
without any guest interruptions.

3.5 Attestation and memory encryption
We assume that hardware implements a root of trust for se-
cure boot, permitting the initial bootloader and slicevisor to
be cryptographically measured and attested. In turn, the slice-
visor attests individual slices; this includes a measurement of
slice configuration, the sliceloader code, and the guest image.
Once booted, a guest can prove to a remote verifier that its
slice is configured as expected and that its isolation is enforced
by trusted slicevisor and sliceloader implementations.

As described earlier, slice memory is strongly isolated to
defend against software attacks. To defend against physical
attacks on memory, such as cold-boot and memory-bus at-
tacks [43, 89], core slicing can leverage memory encryption
hardware. The details of memory encryption are orthogonal
to our design, and we expect to leverage existing platform
mechanisms. In particular, because only trusted components
(sliceloader, guest code, and I/O devices within DMA regions)
can access slice memory, it is irrelevant to slice guests whether
memory is encrypted by a random system-wide key (as in
Intel SGX and Arm CCA), one of a set of random keys (as in
Intel TDX), or a unique key for each guest (as in AMD SEV).

If per-slice memory encryption is nevertheless desired, we
assume that the hardware will provide a suitable interface for

Figure 2: RISC-V prototype with the slice manager (upper
left) and two Linux guest slices (lower terminals).

the slicevisor to configure a unique slice memory encryption
key. In that case, when initializing a new slice, the sliceloader
starts out in an unencrypted context before enabling encryp-
tion to load and boot the guest. Similarly to other confidential
computing architectures [15, 54], once the guest boots, at-
tested I/O devices may access the encrypted memory using
the guest’s encryption context.

4 RISC-V Prototype

We demonstrate the feasibility of our design with a RISC-
V prototype. We chose RISC-V because an existing feature
closely approximates the lockable filter registers required by
core slicing. Our prototype runs in two environments: on a
modified version of QEMU, and on an unmodified Microchip
PolarFire Icicle board with a SiFive FU540-C000 SoC shown
in Figure 2, the latter with some limitations due to partial
support for our requirements. As the guest OS we run Linux.

Common RISC-V CPUs implement three privilege levels:
machine (M) mode for firmware, supervisor (S) mode for an
OS kernel, and user (U) mode for applications. Our SiFive
SoC includes four general-purpose application cores and one
less-powerful monitor core that implements a limited instruc-
tion set with only M and U modes. The monitor core is ideal
for slice0, with the slicevisor running in privileged M-mode,
and the rest of the slice manager in user mode. The remaining
four application cores are available for guest slices in arbitrary
combinations (i.e., up to four single-core guests).

Memory In addition to typical address translation mecha-
nisms, RISC-V supports physical memory protection regis-
ters [93, §3.6] which can be programmed to restrict access
to physical address ranges on a per-core basis. These regis-
ters are grouped into 8 or 16 PMP entries. Each PMP entry
consists of a configuration register and an address register
that specify the access permission (read/write/execute) to a
particular region. Once programmed, PMP checks apply to
all memory accesses from user and supervisor modes, and

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 8



Table 1: PMP permissions by physical region.
Physical address range slice0 M-mode slice0 U-mode sliceU1

sliceU1 RAM — — RWX
slice0 trusted RAM RWX — —
slice0 untrusted RAM RWX RWX —
sliceU1 bus RW — RW
Other sliceU bus RW — —
Cache controller RW — —
Reset unit RW — —
Interrupts to sliceU1 — — RW
Interrupts to slice0 RW — RW
Physical I/O devices* RW — —
sliceU1 virtual devices* — — RW
* Not implemented due to hardware limitations.

optionally from machine mode. Finally, as required by core
slicing, PMP registers include a lock bit that, once set, pre-
vents any subsequent modifications until a reset. Our proto-
type sliceloader configures and locks the PMP entries for each
core in the slice before booting the OS. Thus, code in a slice
cannot access physical addresses outside its slice, even from
the most privileged machine mode.

Besides memory, other locked PMPs grant access to a
slice’s hardware resources (described below), and enforce
privilege separation between the slice manager and slicevisor
on the monitor core. Table 1 summarizes their configuration.

Interrupts Recall that our design calls for lockable mask
registers restricting the destinations for inter-processor inter-
rupts. We found that although RISC-V lacks such a feature,
the careful use of PMPs permits an equivalent mechanism.
To send an IPI on the SiFive SoC, the source core writes to
a memory-mapped register of the destination’s “core-local
interruptor” [102]. Because the register’s address is unique
for every destination, we can use the source core’s PMPs to
restrict the addressable (and thus interruptible) destination
cores. Access to core-local timers is restricted similarly.

I/O devices Our board includes several I/O controllers, and
our prototype grants access to slices using PMPs and routes
interrupts accordingly. We were unable to prototype SR-IOV
support due to a lack of suitable hardware, such as an IOMMU.
The RISC-V community has proposed PMP-like mechanisms
to restrict DMA [103], but these are not yet available.

Cache partitioning The SiFive SoC includes a 2 MiB
shared L2 cache that supports way masking, allowing each
cache master to be restricted to a subset of the 16 total ways.
Since each core’s L1 I- and D-cache act as separate masters
for the L2 cache, we can flexibly partition it by enabling dis-
tinct way sets for each slice. Our implementation scales the
size of a slice’s cache partition with the number of cores in
that slice (i.e., four ways per core); thus, larger slices enjoy a

Figure 3: Boot flow for each core after reset.

larger share of the cache. Untrusted code cannot change the
cache configuration because the cache control registers are
enabled only in the monitor core’s M-mode PMP registers.

Core reset Recall that our design relies on a secure core-
local reset to re-establish trusted control of a core from a user
slice. Unfortunately, our board does not expose per-core reset
signals, requiring a full system reset that reboots the entire
board to clear any PMP lock bits. We have taken a number of
approaches, with different trade-offs, to avoid this limitation.

First, we modified QEMU to implement a new device that
exposes per-core reset registers; our prototype slicevisor uses
these to reassign cores.

Second, we modified the slicevisor to create slices at boot
time using a pre-determined configuration. On our board,
such slices cannot be destroyed without a whole-system reset
because their PMPs are locked. However, despite the loss of
flexibility, this provides a strong security guarantee.

Finally, to test our ability to destroy and create slices on
hardware, we implemented an insecure slice manager with an
alternative software-based reset mechanism. In this version,
PMP lock bits are not set. This provides no meaningful secu-
rity (a malicious slice could reconfigure PMPs), but permits a
cooperative slice to emulate a “secure” reset upon receipt of
an IPI by clearing PMPs and jumping to the sliceloader.

Sliceloader and guest firmware As shown in Figure 3,
the actions of the sliceloader vary depending on the slice to
which the running core is assigned. When booting a guest, the
sliceloader copies itself to private slice memory before setting
PMPs, because doing so makes the main copy inaccessible.

When Linux boots, it infers the system configuration from
a devicetree blob [71] provided by the firmware. This de-
scribes the available memory, cores, and devices on a given
platform. To allow Linux to boot in a slice, we enlightened
the OpenSBI bootloader [94] to run as untrusted code inside
a newly-created slice. It constructs a devicetree describing the
slice configuration before booting Linux. Given an appropri-

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 9



ate devicetree, Linux itself required no modifications to run
with arbitrary physical memory ranges or core IDs.

Slice communication To enable communication between
the slice manager and guests, we implemented a slice bus
message transport, using a region of shared memory between
each guest slice and slice0, with IPIs for signaling.

Attestation To prove that a guest slice runs only the image
expected on a trusted platform, we implemented measured
boot in the sliceloader and attestation in the slicevisor. When
creating a slice, the sliceloader measures guest code and stores
its hash in slice0 trusted memory. To attest, slicevisor gener-
ates an attestation report including the guest measurement and
user-provided data, signed by a slicevisor-held key derived
from a hardware root of trust. A remote party can verify the
attestation using the device public key and the TCB report.

Limitations Due to hardware limitations, our prototype
lacks support for memory encryption. We do not yet imple-
ment virtual serial ports, but assign a UART to each slice.

5 x86 Prototype

We also implemented an x86 prototype. This lacks security
isolation, but permits us to experiment with SR-IOV devices
and compare performance to the state-of-the-art in hardware
virtualization. We discuss ideas for actual hardware support
on x86 platforms later, in §7.

Since there is no security, we simplified our management
stack by building on top of Linux. Specifically, we run Linux
on the bootstrap core, using kernel parameters that restrict
Linux to a single core and a minimal amount of physical mem-
ory. Non-boot cores remain idle, in the wait-for-startup-IPI
state. A privileged process is later responsible for configuring
and booting slices with a user-specified set of cores, range of
physical memory, and set of PCI devices.

Booting a slice To boot a slice, we load the guest kernel into
the chosen physical memory range (accessed via /dev/mem),
construct ACPI and E820 tables describing resources avail-
able to the slice, and then send a startup IPI to the slice’s first
core. This runs a tiny (48-instruction) real-mode bootloader
that constructs a page table, switches to 64-bit mode, and
enters the slice kernel, which then boots as usual, sending
further startup IPIs to other cores.

Guest enlightenments Because all the host hardware
remains accessible, the Linux guest needed a few mod-
ifications. We disabled the CONFIG_DMI and CON-
FIG_X86_MPPARSE build options to prevent the slice kernel
discovering these legacy firmware tables (and hardware they

0%

25%

50%

75%

100%

125%

150%

cjpeg linear loops nnet radix2 sha zip

R
un

tim
e

vs
.n

at
iv

e

Shared
Shared+noise
Private
Private+noise

Figure 4: RISC-V CoreMark results (lower is better).

describe) in the system BIOS. We fixed a bug that uncondi-
tionally enabled interrupts from the legacy PIC despite ACPI
flagging it as absent. Finally, we added 283 lines of code to
(a) use an SR-IOV virtual function without a virtual config-
uration space, and (b) enable only a subset of PCI devices.
These enlightenments would be irrelevant to a hardware im-
plementation. In particular, host firmware and devices would
be inaccessible to slices, and (as described in §3.3) an I/O
device could emulate standard PCI configuration space.

6 Evaluation

This evaluation seeks to answer the following questions:

• What is the performance overhead of core slicing? (§6.1)

• How does the design of core slicing translate into con-
crete security benefits for guest slices? (§6.2)

• What is core slicing’s hardware complexity? (§6.3)

• Does the need for contiguous physical memory lead to
slice allocation failures due to fragmentation? (§6.4)

6.1 Performance
Our experiments run on the RISC-V board described in §4
with a 16-way 2 MiB L2 cache and 1 GiB of DRAM, and
on an HP Z8 workstation with two Intel Xeon 4214 12-core
CPUs (HyperThreading disabled), 64 GiB of RAM, a Mel-
lanox ConnectX-4 25GbE NIC, and a Samsung PM1735
NVMe SSD. Another HP Z8 with two Xeon 4108 CPUs
and the same NIC serves as a client.

RISC-V We run CoreMark PRO [33] and focus on two
questions: (a) does a slice achieve bare-metal performance,
and (b) what is the impact of a “noisy neighbor” slice?

For the native baseline, we enable two application cores and
512 MiB memory. This allows a fair comparison with the slice
measurements, in which we launch two guests, sliceU1 and
sliceU2, each with two cores and 512 MiB memory. As shown
by the shared results, performance in a slice exactly matches

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 10



0%

25%

50%

75%

100%

Graph analytics

Data caching (peak)

Data caching (QoS)

Data serving

Pe
rf

or
m

an
ce

vs
.n

at
iv

e

Slice
VM (2M)
VM (1G)

Figure 5: x86 CloudSuite results (higher is better).

bare-metal execution. To determine the impact of cache con-
tention, we run a workload in sliceU2 as a noisy neighbor
(denoted by ‘noise’) that repeatedly accesses a 2 MiB array
(the same size as the L2 cache). Unsurprisingly, the aver-
age runtimes (denoted by shared+noise) increase depend-
ing on the given workload’s cache intensity. Specifically,
radix2 suffers the most (almost 50% overhead) since it op-
erates on a 512 KiB array and suffers frequent cache misses.
As demonstrated by private+noise, when the cache is parti-
tioned, a noisy neighbor has a substantially smaller impact,
with all workloads achieving stable performance, and out-
performing the shared+noise configuration. The runtimes in
private+noise increase slightly (< 5%) with noise compared
to private, due to contention for the memory controller.

x86 We compare slice performance to equivalent VMs using
CloudSuite 3.0 [87]. Both slice and VM guests have 8 cores
and 16 GiB of RAM (allocated on the same NUMA node),
with NIC and NVMe virtual functions for I/O. We run VMs
under KVM using full hardware acceleration including virtual
APICs, and confirm via performance counters that the only
significant source of VM exits is to service and emulate timer
interrupts. To minimize memory management overhead we
use pre-allocated and locked huge-pages (2 MiB and 1 GiB).

The results in Figure 5 are scaled to a native baseline with
the same cores/memory. Graph analytics, which uses Apache
Spark and GraphX to run PageRank on a large Twitter dataset,
runs 10% slower in a VM. Data caching models a Twitter
cache server with Memcached. Despite sustaining a similar
peak throughput, the VMs have higher jitter and thus perform
up to 8% worse while meeting the published QoS target of
10 ms p95 latency. This appears to be due to the extra TLB
pressure of nested paging: DTLB misses are more than 3×
native for 1 GiB pages, and 5× for 2 MiB pages. Finally, Data
serving runs Apache Cassandra with 10M records of YCSB
workload A and incurs a 12% throughput penalty in a VM.

Summary Core slicing achieves bare-metal performance
without the overhead of virtualization, which remains signifi-
cant for memory-intensive workloads, even with huge pages.

Table 2: Size of software TCB.

Source linesa Executable codeb

slicevisor 3,609 18 KiB
sliceloader 3,607 11 KiB

Total 4,826c 29 KiB
a Non-header lines, counted by cloc [30]. b Size of text section,
from binutils size. c A library common to both is counted once.

Furthermore, hardware cache partitioning (as on RISC-V) not
only lessens the impact of a noisy neighbor, it can also elimi-
nate both cache contention and cache-based side channels.

6.2 Security

Size of trusted computing base Although no guarantee of
security, a small TCB helps make formal verification tractable.
Table 2 reports the executable source and binary sizes of our
prototype. These are comparable to the firmware for Arm
CCA (4.3 kLOC [69]), although we note that core slicing’s
TCB eschews runtime interaction with a running guest, and
thus its attack surface is drastically simpler.

Side channels By partitioning a machine at core granularity
and without a trusted hypervisor, core slicing avoids either the
host or another guest running concurrently on a core. This is
inherently more secure than either reducing the hypervisor’s
size [99, 100] or de-privileging it [13, 17, 53]. We also gain a
systematic defense from a wide variety of CPU side-channel
attacks. Following our threat model (§3.2), we consider two
classes of attacker: guest attackers who may run arbitrary code
in a guest slice, and the host attacker who controls untrusted
code in slice0. We describe the extent to which these may
compromise a guest’s confidentiality.

Cache side-channel attacks are defeated by cache par-
titioning and memory isolation. Because slices never share
memory, a guest attacker cannot steal secrets by analyzing
whether a co-located tenant accesses shared memory ad-
dresses. Because caches are partitioned, the attacker cannot
observe how many cache lines are used by the guest per cache
set. slice0 is similarly restricted. Thus, given suitable hard-
ware support, core slicing eliminates cache-based side chan-
nels. It also defeats all side-channel attacks where the attacker
executes on the victim core, including sibling threads [4, 98].

Transient execution attacks can leak secrets through the
side effects of speculative memory accesses [62, 72], and can
break isolation between hypervisors and VMs. Core slicing
relies on lockable filter registers to restrict memory access.
Because filters only perform a range comparison (with no
memory-bound table walk), they derive no significant benefits
from speculation; e.g., current RISC-V CPUs cache PMP
range checks in the TLB along with address translations [83].

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 11



Cross-core transient execution leaks were recently ob-
served on Intel CPUs [91]; although these remain a threat, we
expect them to be drastically simpler for vendors to identify
and fix in future CPUs, since few instructions access uncore
state. Of note, the demonstrated attack relies on delaying a
victim enclave’s execution with page faults and exceptions,
which is impossible across a slice boundary.

Page-fault- and page-table-based attacks are highly ex-
ploitable on TEEs where an untrusted hypervisor manages
guest memory using a nested page table. In these attacks, a
host learns the guest’s secret-dependent memory access pat-
tern via page faults, page table access/dirty bits, or even cache
contention with hardware table walks. Core slicing prevents
this by allocating physical memory directly to guests. In ad-
dition, memory encryption can suffer from ciphertext-only
attacks (e.g., dictionary attacks) with weak encryption algo-
rithms. In our design, lockable filter registers prevent access
to guest memory, including ciphertext, even by the host.

Side channels in resources shared by multiple cores remain,
including power [61], row-hammer [59], cold-boot [43], and
memory bus [89] attacks. Those can be mitigated with addi-
tional orthogonal hardware support.

6.3 Hardware complexity
To estimate the hardware cost of supporting core slicing, we
extended the default tiny configuration of the RISC-V Rocket
Chip implementation [18]. To measure the overhead of adding
lockable filter registers, we doubled the number of PMPs from
16 to 32 (as might be necessary when existing PMPs are
required for other uses), resulting in only a 3% increase in
total FPGA resources. We also added per-core resets and a
reset device for the monitor core, for 1.7% extra resources.
Since these results are for an embedded core, we expect the
fraction of resources required on a server-grade CPU to be
much smaller.

6.4 Impact of physical contiguity
Unlike VMs, slices require contiguous physical memory, and
the memory assigned to a slice cannot be changed without ter-
minating and restarting it. Thus, it is possible that the available
memory on a node becomes fragmented over time, leading to
a situation where sufficient free memory exists to support a
new slice, but cannot be used as it is not contiguous. Whether
this is a problem in practice depends on both the pattern of
memory allocations (i.e., the order of slices created and de-
stroyed) and the policy implemented by the memory allocator
(i.e., which region of memory to allocate for any given re-
quest). In this section, we report the analysis of VM start/stop
events on a public cloud workload, modeling the effects of
memory allocation policy and hardware capabilities.

The trace we use is similar to the VM allocation trace of
Hadary et al. [42]. It includes all VM start and stop events (in

0.0%

0.1%

0.2%

Fa
ilu

re
s

(%
of

V
M

s) First fit
Best fit
Best fit, 2 regions

0 10 20 30 40 50 60
Trace time (days)

0.0%

0.2%

0.5%

0.8%

Fa
ilu

re
s

(%
of

m
em

or
y)

Figure 6: Rate of slice allocation failures due to memory
fragmentation over a 7-day moving window.

excess of 750k events) for an Azure cluster, and was gathered
over two months in mid-2021. Each VM has a type [81]
that defines its resource allocation, including its memory size
(other resources are irrelevant to our analysis).

In this analysis we ask the question: how often does frag-
mentation prevent the allocation of a slice on a node when a
VM would have succeeded? Thus, although it may be benefi-
cial for the cloud scheduler to use node-level memory conti-
guity in its placement decisions (allocating slices on nodes to
reduce fragmentation), we leave the mapping of VMs to nodes
unchanged and model slices as a drop-in replacement. Since
our focus is memory allocation, we model every VM as a slice
with physically contiguous memory. In reality, we expect that
some types (such as burstable VMs) would continue to run as
VMs on the cloud provider’s hypervisor either within a slice
of a larger machine, or using dedicated machines.

The results of our analysis are shown in Figure 6. We
experimented with a variety of memory allocators, and found
unsurprisingly that a best-fit policy (which places each new
slice in the smallest free region of sufficient size) minimized
fragmentation and thus allocation failures. Other policies,
including a traditional buddy allocator, performed uniformly
worse and are not shown on the figure. Calculating the best
allocation will take slightly longer, but given the low rate of
slice instantiations relative to traditional memory allocation
workloads, this overhead is not expected to be significant.

As shown in the figure, the allocation failure rate for fully
contiguous memory is less than 0.3% of VMs in the trace, rep-
resenting less than 1% of the total requested memory (since
larger VMs are more likely to fail allocation). We also mod-
eled the effect of permitting multiple contiguous regions per
slice. With hardware support for two memory regions per
slice, the memory allocator is able to split large slices across
two distinct allocations, and the failure rate drops further to

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 12



less than 0.1% (only 6 failures across the entire trace). With
three regions per slice, there are no failures. Overall, we con-
clude that restricting slices to contiguous memory does not
pose a significant constraint for cloud operators. A different
analysis by Teabe et al. [108] reached the same conclusion.

7 Discussion: core slicing beyond RISC-V

For a prototype implementation of core slicing, RISC-V had
several advantages; most significantly, the use of physical
memory protection registers allowed us to implement the bulk
of our design on unmodified hardware. However, our design
does not depend on RISC-V, and we ultimately hope to see
it adopted by the x86 and Arm architectures that dominate
today’s cloud. This section discusses some of the challenges
in doing so, and offers guidance to hardware designers.

The obvious first step in adapting an existing architecture
to support core slicing would be to implement our hardware
requirements: lockable filter registers to restrict a core’s abil-
ity to access memory and send inter-processor interrupts, and
a secure core-local reset to regain control of it. Of course,
the details matter, and thanks to the long evolution of these
architectures, there are many interactions with existing archi-
tectural features that must be considered.

Recall that our design goal with core slicing is to give guest
software unfettered bare-metal access to a single core (or set
of cores). As a first rule of thumb, we propose that resource
restrictions imposed via filter registers should take priority
over other core-level architectural features. This implies that
existing features granting privileged access to memory, such
as hardware shadow stacks [52] or secure-world memory
regions [16] must be constrained by lockable address filters.

Second, any hardware resources that are shared by more
than one core must be restricted. This includes peripherals,
memory and cache controller configurations, and power man-
agement registers, among others. In RISC-V systems, such
registers are memory mapped and thus restricted by PMPs,
but on x86 they are configured via model-specific registers
(MSRs) that occupy a distinct address space accessible to
privileged software on each core (Arm system registers are
similar). The access restriction could be implemented via fur-
ther filter registers, or as a simpler alternative, access to these
resources could be limited to the management core running
the sliceloader. For the specific case of x86 MSRs, we expect
that the MSR bitmaps found in the VM control block will
serve as a useful starting point in determining the appropri-
ate policy. Finally, the x86 legacy I/O address space must be
filtered or (for legacy-free guests) blocked outright.

Finally, the platform must not depend on firmware running
on guest cores. Thus, the system design should avoid the need
for platform firmware in x86 system management mode or
Arm EL3 on general-purpose cores. The motivation for this
requirement is the same as that of core slicing: to avoid relying
on intra-core privilege separation due to its demonstrated

weakness. In our view, firmware tasks are better delegated to
a dedicated management core (along with the slicevisor).

8 Related work

Direct hardware assignment We discussed secure hyper-
visors and confidential VMs in §2.2.

NoHype’s [58, 107] central security goal is to protect a
trusted cloud provider and its legitimate customers from rogue
VMs that try to exploit vulnerabilities in the hypervisor or the
associated virtualization stack. NoHype achieves this goal by
removing all run-time interfaces that traditional hypervisors
expose to traditional VMs. The security goals of core slic-
ing reach significantly further and address threats that have
emerged during the decade since NoHype was designed. In
addition to protecting the cloud infrastructure from rogue
guest VMs, core slicing protects guests from the untrusted
cloud provider. This task is complicated by an ever-growing
array of microarchitectural attacks that can leak information
out of VMs. Therefore, core slicing does not allow any cloud
provider code to run on a guest’s processor cores. In contrast,
NoHype requires a highly privileged “temporary hypervisor”
on those cores.

Core slicing relies on simple lockable filter registers to
confine guests which enjoy bare-metal control over cores, and
may run their own hypervisor. NoHype relies on conventional
processor privileges; guests thus lack access to virtualization
extensions, must be modified to avoid VM exits (notably,
they must not execute CPUID, including in user mode), and
must ignore spurious interrupts from other guests (both a side
channel and a denial-of-service attack).

TrustOSV [120] and Quest-V [123] minimize runtime
guest-hypervisor interactions by statically assigning cores
and memory. The core of TrustOSV is a microhypervisor
that uses nested paging to constrain guest memory accesses.
Quest-V replaces a global hypervisor by trusted per-core mon-
itors that also run in host/root mode and use nested paging.
TrustOSV reduces trust in the cloud provider by attesting the
microhypervisor and exposing a limited management inter-
face. In contrast to core slicing’s use of I/O offload, TrustOSV
exposes a virtual NIC which is also the basis of its storage.

Space partitioning The use of core-granularity spatial par-
titioning [47, 73] for resource and security isolation has been
explored in the context of prior many-core systems includ-
ing the Tilera TILE64 [122], Intel single-chip cloud com-
puter [75] and M3 [19], and the core idea dates back at least as
far as IBM’s logical partitioning feature from the 1980s [21].
Core slicing builds on the same mechanism, but is unique
in its adoption of the confidential computing threat model,
with a clear separation of host and guest trusted computing
base. This leads us to the use of a unique mechanism com-
bining per-core secure reset with lockable filter registers to

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 13



enable attested boot while minimizing the guest TCB. Past
designs, including those cited above, permit a guest’s acces-
sible resources to be reconfigured at runtime by a privileged
management core, requiring substantially more trust by the
guest in the host’s resource manager.

RISC-V security Several systems use PMP hardware for
different goals. Keystone [64] is a framework for trusted exe-
cution environments similar to Intel SGX [46]. The OpenSBI
bootloader can partition a machine into static PMP-isolated
domains at boot time [95]. MultiZone [45] isolates software
components (e.g., core RTOS and communication stack).

9 Conclusion

VMs are the basis of cloud isolation, but relying on them
for confidential computing carries a serious risk from side
channels. Core slicing offers an attractive middle ground
between bare-metal servers and confidential VMs. By parti-
tioning hardware at natural boundaries (discrete cores and
contiguous physical memory ranges), it enables VM-like func-
tionality and bare-metal performance with strong isolation.

Our prototypes are available at https://github.com/
MSRSSP/core-slicing.

Acknowledgments

We thank Luke Marshall for help preparing the VM traces
in §6.4. The detailed reviews we received from OSDI’22,
ASPLOS’23 and OSDI’23 along with feedback from our
shepherd Ed Bugnion helped us greatly improve the paper.

References

[1] K. Adams and O. Agesen. A comparison of software
and hardware techniques for x86 virtualization. In
Proceedings of the 12th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, pages 2–13, 2006. doi:
10.1145/1168857.1168860.

[2] A. Agache, M. Brooker, A. Iordache, A. Liguori,
R. Neugebauer, P. Piwonka, and D.-M. Popa. Fire-
cracker: Lightweight virtualization for serverless appli-
cations. In Proceedings of the 17th USENIX Sym-
posium on Networked Systems Design and Imple-
mentation, pages 419–434, Feb. 2020. ISBN 978-
1-939133-13-7. https://www.usenix.org/conference/
nsdi20/presentation/agache.

[3] H. Alam, T. Zhang, M. Erez, and Y. Etsion. Do-
It-Yourself virtual memory translation. In Proceed-
ings of the 44th IEEE International Symposium on
Computer Architecture, pages 457–468, 2017. doi:
10.1145/3079856.3080209.

[4] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. P.
García, and N. Tuveri. Port contention for fun and
profit. In Proceedings of the 40th IEEE Symposium
on Security and Privacy, pages 870–887, 2019. doi:
10.1109/SP.2019.00066.

[5] Enhanced networking on Linux. Amazon
Web Services, Dec. 2022. https://docs.aws.
amazon.com/AWSEC2/latest/UserGuide/enhanced-
networking.html.

[6] AWS Nitro System. Amazon Web Services, Dec. 2022.
https://aws.amazon.com/ec2/nitro.

[7] The Security Design of the AWS Nitro System. Amazon
Web Services, Nov. 2022. https://docs.aws.amazon.
com/whitepapers/latest/security-design-of-aws-nitro-
system/security-design-of-aws-nitro-system.html.

[8] Amazon EBS and NVMe on Linux in-
stances. Amazon Web Services, Dec. 2022.
https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/nvme-ebs-volumes.html.

[9] Amazon EC2 Maintenance Help Page. Amazon Web
Services, 2022. https://aws.amazon.com/maintenance-
help.

[10] Amazon EC2: Burstable performance in-
stances. Amazon Web Services, Dec. 2022.
https://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/burstable-performance-instances.html.

[11] Amazon EC2: Instance types. Amazon Web Services,
Dec. 2022. https://docs.aws.amazon.com/AWSEC2/
latest/UserGuide/instance-types.html.

[12] AMD I/O Virtualization Technology (IOMMU) Spec-
ification. AMD, Dec. 2016. Publication #48882
rev. 3.00 https://developer.amd.com/wordpress/media/
2013/12/48882_IOMMU.pdf.

[13] AMD SEV-SNP: Strengthening VM isolation with
integrity protection and more. AMD, Jan. 2020.
https://www.amd.com/system/files/TechDocs/SEV-
SNP-strengthening-vm-isolation-with-integrity-
protection-and-more.pdf.

[14] AMD. AMD server vulnerabilities, Nov. 2021. Secu-
rity Bulletin ID AMD-SB-1021 https://www.amd.com/
en/corporate/product-security/bulletin/amd-sb-1021.

[15] AMD SEV-TIO: Trusted I/O for Secure En-
crypted Virtualization. AMD, Mar. 2023.
https://www.amd.com/content/dam/amd/en/
documents/developer/sev-tio-whitepaper.pdf.

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 14

https://github.com/MSRSSP/core-slicing
https://github.com/MSRSSP/core-slicing
https://doi.org/10.1145/1168857.1168860
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
https://doi.org/10.1145/3079856.3080209
https://doi.org/10.1109/SP.2019.00066
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/enhanced-networking.html
https://aws.amazon.com/ec2/nitro
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.html
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.html
https://docs.aws.amazon.com/whitepapers/latest/security-design-of-aws-nitro-system/security-design-of-aws-nitro-system.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/nvme-ebs-volumes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/nvme-ebs-volumes.html
https://aws.amazon.com/maintenance-help
https://aws.amazon.com/maintenance-help
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://developer.amd.com/wordpress/media/2013/12/48882_IOMMU.pdf
https://developer.amd.com/wordpress/media/2013/12/48882_IOMMU.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1021
https://www.amd.com/en/corporate/product-security/bulletin/amd-sb-1021
https://www.amd.com/content/dam/amd/en/documents/developer/sev-tio-whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/developer/sev-tio-whitepaper.pdf


[16] Building a Secure System using TrustZone Technol-
ogy. ARM Limited, Apr. 2009. Ref. PRD29-GENC-
009492C.

[17] Arm Realm Management Extension (RME) System
Architecture. Arm Limited, Nov. 2021. Docu-
ment DEN0129 ver. A.b https://developer.arm.com/
documentation/den0129/ab.

[18] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer,
D. Biancolin, C. Celio, H. Cook, D. Dabbelt, J. Hauser,
A. Izraelevitz, S. Karandikar, B. Keller, D. Kim,
J. Koenig, Y. Lee, E. Love, M. Maas, A. Mag-
yar, H. Mao, M. Moreto, A. Ou, D. A. Patter-
son, B. Richards, C. Schmidt, S. Twigg, H. Vo,
and A. Waterman. The Rocket Chip generator.
Technical Report UCB/EECS-2016-17, EECS De-
partment, University of California, Berkeley, Apr.
2016. https://www2.eecs.berkeley.edu/Pubs/TechRpts/
2016/EECS-2016-17.html.

[19] N. Asmussen, M. Völp, B. Nöthen, H. Härtig, and
G. Fettweis. M3: A hardware/operating-system co-
design to tame heterogeneous manycores. In Pro-
ceedings of the 21st ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 189–203, 2016. doi:
10.1145/2872362.2872371.

[20] M. Ben-Yehuda, M. D. Day, Z. Dubitzky, M. Factor,
N. Har’El, A. Gordon, A. Liguori, O. Wasserman, and
B.-A. Yassour. The Turtles Project: Design and im-
plementation of nested virtualization. In Proceedings
of the 9th USENIX Symposium on Operating Systems
Design and Implementation, Oct. 2010. URL https:
//www.usenix.org/conference/osdi10/turtles-project-
design-and-implementation-nested-virtualization.

[21] T. L. Borden, J. P. Hennessy, and J. W. Rymarczyk.
Multiple operating systems on one processor com-
plex. IBM Systems Journal, 28(1):104–123, Mar. 1989.
ISSN 0018-8670. doi: 10.1147/sj.281.0104.

[22] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen,
S. Capkun, and A.-R. Sadeghi. Software grand expo-
sure: SGX cache attacks are practical. In Proceedings
of the 11th USENIX Workshop on Offensive Technolo-
gies, 2017. doi: 10.5555/3154768.3154779.

[23] E. Bugnion, S. Devine, M. Rosenblum, J. Sugerman,
and E. Y. Wang. Bringing virtualization to the x86
architecture with the original VMware Workstation.
ACM Transactions on Computer Systems, 30(4), Nov.
2012. doi: 10.1145/2382553.2382554.

[24] R. Buhren, C. Werling, and J.-P. Seifert. Insecure until
proven updated: Analyzing AMD SEV’s remote attes-
tation. In Proceedings of the 26th ACM Conference on

Computer and Communications Security, pages 1087–
1099, 2019. doi: 10.1145/3319535.3354216.

[25] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and
T. H. Lai. SgxPectre: Stealing Intel secrets from
SGX enclaves via speculative execution. In Pro-
ceedings of the 2019 IEEE European Symposium on
Security and Privacy, pages 142–157, 2019. doi:
10.1109/MSEC.2019.2963021.

[26] C. Cohen, J. Forshaw, J. Horn, and M. Brand.
AMD secure processor for confidential comput-
ing security review. Google Project Zero, May
2022. https://googleprojectzero.blogspot.com/2022/
05/release-of-technical-report-into-amd.html.

[27] P. Colp, M. Nanavati, J. Zhu, W. Aiello, G. Coker,
T. Deegan, P. Loscocco, and A. Warfield. Breaking
up is hard to do: Security and functionality in a com-
modity hypervisor. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles, pages
189–202. ACM, 2011. doi: 10.1145/2043556.2043575.

[28] E. Cortez, A. Bonde, A. Muzio, M. Russinovich,
M. Fontoura, and R. Bianchini. Resource central: Un-
derstanding and predicting workloads for improved
resource management in large cloud platforms. In Pro-
ceedings of the 26th ACM Symposium on Operating
Systems Principles, pages 153–167, Oct. 2017. doi:
10.1145/3132747.3132772.

[29] V. Costan, I. Lebedev, and S. Devadas. Sanc-
tum: Minimal hardware extensions for strong
software isolation. In Proceedings of the
25th USENIX Security Symposium, pages 857–
874, Aug. 2016. ISBN 978-1-931971-32-4.
https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/costan.

[30] A. Danial. cloc: Count lines of code, 2022. https:
//github.com/AlDanial/cloc.

[31] S. Dinesh, G. Garrett-Grossman, and C. W. Fletcher.
SynthCT: Towards portable constant-time code. In
Proceedings of the Annual Network and Distributed
System Security Symposium, Feb. 2022. doi:
10.14722/ndss.2022.24215.

[32] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan.
High performance network virtualization with SR-
IOV. In Proceedings of the 16th IEEE Interna-
tional Symposium on High-Performance Computer
Architecture, pages 1–10. IEEE, Jan. 2010. doi:
10.1109/HPCA.2010.5416637.

[33] CoreMark PRO. EEMBC, July 2019. v1.1.2743 https:
//www.eembc.org/coremark-pro.

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 15

https://developer.arm.com/documentation/den0129/ab
https://developer.arm.com/documentation/den0129/ab
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html
https://doi.org/10.1145/2872362.2872371
https://www.usenix.org/conference/osdi10/turtles-project-design-and-implementation-nested-virtualization
https://www.usenix.org/conference/osdi10/turtles-project-design-and-implementation-nested-virtualization
https://www.usenix.org/conference/osdi10/turtles-project-design-and-implementation-nested-virtualization
https://doi.org/10.1147/sj.281.0104
https://doi.org/10.5555/3154768.3154779
https://doi.org/10.1145/2382553.2382554
https://doi.org/10.1145/3319535.3354216
https://doi.org/10.1109/MSEC.2019.2963021
https://googleprojectzero.blogspot.com/2022/05/release-of-technical-report-into-amd.html
https://googleprojectzero.blogspot.com/2022/05/release-of-technical-report-into-amd.html
https://doi.org/10.1145/2043556.2043575
https://doi.org/10.1145/3132747.3132772
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://doi.org/10.14722/ndss.2022.24215
https://doi.org/10.1109/HPCA.2010.5416637
https://www.eembc.org/coremark-pro
https://www.eembc.org/coremark-pro


[34] P. Emelyanov. Checkpoint/restore in userspace
(CRIU), 2022. https://criu.org.

[35] A. Ferraiuolo, A. Baumann, C. Hawblitzel, and
B. Parno. Komodo: Using verification to disentan-
gle secure-enclave hardware from software. In Pro-
ceedings of the 26th ACM Symposium on Operating
Systems Principles, pages 287–305, Oct. 2017. doi:
10.1145/3132747.3132782.

[36] D. Firestone, A. Putnam, S. Mundkur, D. Chiou,
A. Dabagh, M. Andrewartha, H. Angepat, V. Bhanu,
A. Caulfield, E. Chung, H. K. Chandrappa, S. Chatur-
mohta, M. Humphrey, J. Lavier, N. Lam, F. Liu,
K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel,
T. Sapre, M. Shaw, G. Silva, M. Sivakumar, N. Sri-
vastava, A. Verma, Q. Zuhair, D. Bansal, D. Burger,
K. Vaid, D. A. Maltz, and A. Greenberg. Azure accel-
erated networking: SmartNICs in the public cloud. In
Proceedings of the 15th USENIX Symposium on Net-
worked Systems Design and Implementation, pages 51–
66, Apr. 2018. ISBN 978-1-939133-01-4. https://www.
usenix.org/conference/nsdi18/presentation/firestone.

[37] J. Gandhi, M. D. Hill, and M. M. Swift. Agile paging:
Exceeding the best of nested and shadow paging. In
Proceedings of the 43rd IEEE International Sympo-
sium on Computer Architecture, pages 707–718, 2016.
doi: 10.1109/ISCA.2016.67.

[38] Gartner Says Worldwide IaaS Public Cloud Ser-
vices Market Grew 40.7% in 2020. Gartner, June
2021. https://www.gartner.com/en/newsroom/press-
releases/2021-06-28-gartner-says-worldwide-iaas-
public-cloud-services-market-grew-40-7-percent-in-
2020.

[39] S. Gast, J. Juffinger, M. Schwarzl, G. Saileshwar,
A. Kogler, S. Franza, M. Kostl, and D. Gruss. SQUIP:
Exploiting the scheduler queue contention side chan-
nel. In Proceedings of the 44th IEEE Symposium
on Security and Privacy, pages 468–484, 2023. doi:
10.1109/SP46215.2023.00027.

[40] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda,
A. Landau, A. Schuster, and D. Tsafrir. ELI: Bare-
metal performance for I/O virtualization. In Proceed-
ings of the 17th ACM International Conference on
Architectural Support for Programming Languages
and Operating Systems, pages 411–422, 2012. doi:
10.1145/2150976.2151020.

[41] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller.
Cache attacks on Intel SGX. In Proceedings of the
10th European Workshop on Systems Security, pages
1–6, 2017. doi: 10.1145/3065913.3065915.

[42] O. Hadary, L. Marshall, I. Menache, A. Pan, E. E. Gre-
eff, D. Dion, S. Dorminey, S. Joshi, Y. Chen, M. Russi-
novich, and T. Moscibroda. Protean: VM allocation
service at scale. In Proceedings of the 14th USENIX
Symposium on Operating Systems Design and Imple-
mentation, pages 845–861, Nov. 2020. ISBN 978-
1-939133-19-9. https://www.usenix.org/conference/
osdi20/presentation/hadary.

[43] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clark-
son, W. Paul, J. A. Calandrino, A. J. Feldman,
J. Appelbaum, and E. W. Felten. Lest we remember:
Cold boot attacks on encryption keys. In Proceedings
of the 17th USENIX Security Symposium, pages 45–60,
July 2008. https://www.usenix.org/conference/17th-
usenix-security-symposium/lest-we-remember-cold-
boot-attacks-encryption-keys.

[44] F. Hetzelt and R. Buhren. Security analysis of en-
crypted virtual machines. ACM SIGPLAN Notices, 52
(7):129–142, 2017. doi: 10.1145/3050748.3050763.

[45] MultiZone Security Reference Manual. HEX-Five,
Sept. 2020. https://github.com/hex-five/multizone-sdk/
raw/8c92f55/manual.pdf.

[46] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and
J. Del Cuvillo. Using innovative instructions to create
trustworthy software solutions. In Proceedings of the
2nd International Workshop on Hardware and Archi-
tectural Support for Security and Privacy, 2013. doi:
10.1145/2487726.2488370.

[47] J.-C. Huang, M. Monchiero, Y. Turner, and H.-H. S.
Lee. Ally: OS-transparent packet inspection using
sequestered cores. In 7th IEEE Symposium on Archi-
tectures for Networking and Communications Systems,
pages 1–11, 2011. doi: 10.1109/ANCS.2011.11.

[48] Intel. Resources and response to side chan-
nel variants 1, 2, 3, Aug. 2018. https:
//www.intel.com/content/www/us/en/architecture-
and-technology/side-channel-variants-1-2-3.html.

[49] Intel Virtualization Technology for Directed
I/O Architecture Specification. Intel, Apr.
2021. Order number D51397-013, rev. 3.3
https://www.intel.com/content/www/us/en/develop/
download/intel-virtualization-technology-for-
directed-io-architecture-specification.html.

[50] Software Guard Extensions Programming Refer-
ence. Intel Corp., Oct. 2014. Ref. #329298-002
https://software.intel.com/sites/default/files/managed/
48/88/329298-002.pdf.

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 16

https://criu.org
https://doi.org/10.1145/3132747.3132782
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://doi.org/10.1109/ISCA.2016.67
https://www.gartner.com/en/newsroom/press-releases/2021-06-28-gartner-says-worldwide-iaas-public-cloud-services-market-grew-40-7-percent-in-2020
https://www.gartner.com/en/newsroom/press-releases/2021-06-28-gartner-says-worldwide-iaas-public-cloud-services-market-grew-40-7-percent-in-2020
https://www.gartner.com/en/newsroom/press-releases/2021-06-28-gartner-says-worldwide-iaas-public-cloud-services-market-grew-40-7-percent-in-2020
https://www.gartner.com/en/newsroom/press-releases/2021-06-28-gartner-says-worldwide-iaas-public-cloud-services-market-grew-40-7-percent-in-2020
https://doi.org/10.1109/SP46215.2023.00027
https://doi.org/10.1145/2150976.2151020
https://doi.org/10.1145/3065913.3065915
https://www.usenix.org/conference/osdi20/presentation/hadary
https://www.usenix.org/conference/osdi20/presentation/hadary
https://www.usenix.org/conference/17th-usenix-security-symposium/lest-we-remember-cold-boot-attacks-encryption-keys
https://www.usenix.org/conference/17th-usenix-security-symposium/lest-we-remember-cold-boot-attacks-encryption-keys
https://www.usenix.org/conference/17th-usenix-security-symposium/lest-we-remember-cold-boot-attacks-encryption-keys
https://doi.org/10.1145/3050748.3050763
https://github.com/hex-five/multizone-sdk/raw/8c92f55/manual.pdf
https://github.com/hex-five/multizone-sdk/raw/8c92f55/manual.pdf
https://doi.org/10.1145/2487726.2488370
https://doi.org/10.1109/ANCS.2011.11
https://www.intel.com/content/www/us/en/architecture-and-technology/side-channel-variants-1-2-3.html
https://www.intel.com/content/www/us/en/architecture-and-technology/side-channel-variants-1-2-3.html
https://www.intel.com/content/www/us/en/architecture-and-technology/side-channel-variants-1-2-3.html
https://www.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://www.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://www.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-directed-io-architecture-specification.html
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf


[51] Intel SGX. Intel Corp., June 2015. Ref. #332680-002
https://www.intel.com/content/dam/develop/external/
us/en/documents/332680-002-610985.pdf.

[52] Control-flow Enforcement Technology Preview. Intel
Corp., June 2016. Ref. #334525-001 https://software.
intel.com/sites/default/files/managed/4d/2a/control-
flow-enforcement-technology-preview.pdf.

[53] Intel Trust Domain CPU Architectural Extensions.
Intel Corp., Sept. 2020. Ref. #343754-001US
https://software.intel.com/content/dam/develop/
external/us/en/documents/intel-tdx-cpu-architectural-
specification.pdf.

[54] Intel TDX Connect Architecture Specification.
Intel Corp., May 2021. https://www.intel.com/
content/www/us/en/content-details/773614/intel-tdx-
connect-architecture-specification.html.

[55] S. Jin, J. Ahn, S. Cha, and J. Huh. Architectural support
for secure virtualization under a vulnerable hypervisor.
In Proceedings of the 44th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO-44,
pages 272–283, 2011. doi: 10.1145/2155620.2155652.

[56] S. Johnson. Intel SGX and side-channels. Intel
Developer Zone, Feb. 2018. https://web.archive.org/
web/20200228140427/https://software.intel.com/en-
us/articles/intel-sgx-and-side-channels.

[57] V. Kanchanahalli. Power your Azure GPU worksta-
tions with flexible GPU partitioning. Azure Blog, Mar.
2020. https://azure.microsoft.com/en-us/blog/power-
your-azure-gpu-workstations-with-flexible-gpu-
partitioning.

[58] E. Keller, J. Szefer, J. Rexford, and R. B. Lee. NoHype:
Virtualized cloud infrastructure without the virtualiza-
tion. In Proceedings of the 37th IEEE International
Symposium on Computer Architecture, pages 350–361,
June 2010. doi: 10.1145/1815961.1816010.

[59] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,
C. Wilkerson, K. Lai, and O. Mutlu. Flipping bits
in memory without accessing them: An experimen-
tal study of DRAM disturbance errors. In Proceed-
ings of the 41st IEEE International Symposium on
Computer Architecture, pages 361–372, 2014. doi:
10.1109/ISCA.2014.6853210.

[60] P. Kocher. Conference presentation of Kocher et al.
[62], May 2019. https://youtu.be/zOvBHxMjNls.

[61] P. Kocher, J. Jaffe, and B. Jun. Differential power
analysis. In Proceedings of the 19th International
Cryptology Conference, pages 388–397. Springer, Aug.
1999. doi: 10.1007/3-540-48405-1_25.

[62] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss,
W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom. Spectre at-
tacks: Exploiting speculative execution. In Proceed-
ings of the 40th IEEE Symposium on Security and Pri-
vacy, pages 1–19, 2019. doi: 10.1109/SP.2019.00002.

[63] P. Kutch. PCI-SIG SR-IOV primer: An in-
troduction to SR-IOV technology. Intel ap-
plication note 321211–002, Jan. 2011. https:
//www.intel.com/content/dam/doc/white-paper/pci-
sig-single-root-io-virtualization-support-in-
virtualization-technology-for-connectivity-paper.pdf.

[64] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and
D. Song. Keystone: An open framework for ar-
chitecting trusted execution environments. In Pro-
ceedings of the 15th ACM European Conference on
Computer Systems, pages 1–16, Apr. 2020. doi:
10.1145/3342195.3387532.

[65] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim,
and M. Peinado. Inferring fine-grained control
flow inside SGX enclaves with branch shad-
owing. In Proceedings of the 26th USENIX
Security Symposium, pages 557–574, 2017.
https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/lee-sangho.

[66] M. Li, W. Zang, K. Bai, M. Yu, and P. Liu. MyCloud:
Supporting user-configured privacy protection in cloud
computing. In Proceedings of the 29th ACM Annual
Computer Security Applications Conference, pages 59–
68, 2013. doi: 10.1145/2523649.2523680.

[67] M. Li, Y. Zhang, Z. Lin, and Y. Solihin. Ex-
ploiting unprotected I/O operations in AMD’s
secure encrypted virtualization. In Proceed-
ings of the 28th USENIX Security Symposium,
pages 1257–1272, Aug. 2019. ISBN 978-1-
939133-06-9. https://www.usenix.org/conference/
usenixsecurity19/presentation/li-mengyuan.

[68] M. Li, L. Wilke, J. Wichelmann, T. Eisenbarth,
R. Teodorescu, and Y. Zhang. A systematic look
at ciphertext side channels on AMD SEV-SNP. In
Proceedings of the 43rd IEEE Symposium on Se-
curity and Privacy, pages 1541–1541, 2022. doi:
10.1109/SP46214.2022.9833768.

[69] X. Li, X. Li, C. Dall, R. Gu, J. Nieh, Y. Sait, and
G. Stockwell. Design and verification of the Arm
confidential compute architecture. In Proceedings
of the 16th USENIX Symposium on Operating Sys-
tems Design and Implementation, July 2022. https:
//www.usenix.org/conference/osdi22/presentation/li.

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 17

https://www.intel.com/content/dam/develop/external/us/en/documents/332680-002-610985.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/332680-002-610985.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-cpu-architectural-specification.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-cpu-architectural-specification.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-cpu-architectural-specification.pdf
https://www.intel.com/content/www/us/en/content-details/773614/intel-tdx-connect-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/773614/intel-tdx-connect-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/773614/intel-tdx-connect-architecture-specification.html
https://doi.org/10.1145/2155620.2155652
https://web.archive.org/web/20200228140427/https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://web.archive.org/web/20200228140427/https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://web.archive.org/web/20200228140427/https://software.intel.com/en-us/articles/intel-sgx-and-side-channels
https://azure.microsoft.com/en-us/blog/power-your-azure-gpu-workstations-with-flexible-gpu-partitioning
https://azure.microsoft.com/en-us/blog/power-your-azure-gpu-workstations-with-flexible-gpu-partitioning
https://azure.microsoft.com/en-us/blog/power-your-azure-gpu-workstations-with-flexible-gpu-partitioning
https://doi.org/10.1145/1815961.1816010
https://doi.org/10.1109/ISCA.2014.6853210
https://youtu.be/zOvBHxMjNls
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1109/SP.2019.00002
https://www.intel.com/content/dam/doc/white-paper/pci-sig-single-root-io-virtualization-support-in-virtualization-technology-for-connectivity-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/pci-sig-single-root-io-virtualization-support-in-virtualization-technology-for-connectivity-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/pci-sig-single-root-io-virtualization-support-in-virtualization-technology-for-connectivity-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/pci-sig-single-root-io-virtualization-support-in-virtualization-technology-for-connectivity-paper.pdf
https://doi.org/10.1145/3342195.3387532
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/lee-sangho
https://doi.org/10.1145/2523649.2523680
https://www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan
https://www.usenix.org/conference/usenixsecurity19/presentation/li-mengyuan
https://doi.org/10.1109/SP46214.2022.9833768
https://www.usenix.org/conference/osdi22/presentation/li
https://www.usenix.org/conference/osdi22/presentation/li


[70] J. T. Lim and J. Nieh. Optimizing nested virtualization
performance using direct virtual hardware. In Pro-
ceedings of the 25th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 557–574, 2020. ISBN
9781450371025. doi: 10.1145/3373376.3378467.

[71] The Devicetree Specification. Linaro, 0.4-rc1 edition,
Nov. 2021. https://www.devicetree.org/specifications.

[72] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
A. Fogh, J. Horn, S. Mangard, P. Kocher, D. Genkin,
Y. Yarom, and M. Hamburg. Meltdown: Reading kernel
memory from user space. In Proceedings of the 27th
USENIX Security Symposium, pages 973–990, Aug.
2018. ISBN 978-1-939133-04-5. https://www.usenix.
org/conference/usenixsecurity18/presentation/lipp.

[73] R. Liu, K. Klues, S. Bird, S. Hofmeyr, K. Asanović, and
J. Kubiatowicz. Tessellation: Space-time partitioning
in a manycore client OS. In Proceedings of the 1st
USENIX Workshop on Hot Topics in Parallelism, Mar.
2009. https://www.usenix.org/legacy/events/hotpar09/
tech/full_papers/liu/liu.pdf.

[74] A. Markuze, I. Smolyar, A. Morrison, and D. Tsafrir.
DAMN: Overhead-free IOMMU protection for net-
working. In Proceedings of the 23rd ACM Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
301–315, Mar. 2018. doi: 10.1145/3173162.3173175.

[75] R. J. Masti, C. Marforio, K. Kostiainen, C. Soriente,
and S. Capkun. Logical partitions on many-core plat-
forms. In Proceedings of the 31st ACM Annual Com-
puter Security Applications Conference, pages 451–
460, 2015. doi: 10.1145/2818000.2818026.

[76] Hyper-V HyperClear Mitigation for L1 Terminal
Fault. Microsoft, Aug. 2018. https://techcommunity.
microsoft.com/t5/virtualization/hyper-v-hyperclear-
mitigation-for-l1-terminal-fault/ba-p/382429.

[77] Managing Hyper-V hypervisor scheduler
types: The core scheduler. Microsoft, Dec.
2021. https://docs.microsoft.com/windows-
server/virtualization/hyper-v/manage/manage-
hyper-v-scheduler-types#the-core-scheduler.

[78] About Azure DCasv5/ECasv5-series confidential
virtual machines. Microsoft Azure, Nov. 2021.
https://docs.microsoft.com/en-us/azure/confidential-
computing/confidential-vm-overview.

[79] Maintenance for virtual machines in Azure. Microsoft
Azure, Oct. 2021. https://docs.microsoft.com/en-us/
azure/virtual-machines/maintenance-and-updates.

[80] B-series burstable virtual machine sizes. Microsoft
Azure, June 2022. https://docs.microsoft.com/en-us/
azure/virtual-machines/sizes-b-series-burstable.

[81] Azure compute unit. Microsoft Azure, Apr.
2022. https://docs.microsoft.com/en-us/azure/virtual-
machines/acu.

[82] A. Moghimi, G. Irazoqui, and T. Eisenbarth.
CacheZoom: How SGX amplifies the power of
cache attacks. In Proceedings of the Interna-
tional Conference on Cryptographic Hardware and
Embedded Systems, pages 69–90. Springer, 2017.
https://eprint.iacr.org/2017/618.

[83] L. Nelson and X. Wang. Developing security monitors
on RISC-V: Case studies on HiFive Unleashed. Techni-
cal Report UW-CSE-2019-11-01, University of Wash-
ington, Nov. 2019. URL https://unsat.cs.washington.
edu/papers/nelson-hifive-tr.pdf.

[84] K. T. Nguyen. Usage models for cache allocation
technology in the Intel Xeon processor E5 v4 family,
Feb. 2016. https://www.intel.com/content/www/
us/en/developer/articles/technical/cache-allocation-
technology-usage-models.html.

[85] U. G. A. Office. Solarwinds cyberattack demands
significant federal and private-sector response,
Apr. 2021. https://www.gao.gov/blog/solarwinds-
cyberattack-demands-significant-federal-and-private-
sector-response-infographic.

[86] M. Oliverio, K. Razavi, H. Bos, and C. Giuffrida.
Secure page fusion with VUsion. In Proceed-
ings of the 26th ACM Symposium on Operating
Systems Principles, pages 531–545, 2017. doi:
10.1145/3132747.3132781.

[87] T. Palit, Y. Shen, and M. Ferdman. Demystifying cloud
benchmarking. In IEEE International Symposium on
Performance Analysis of Systems and Software (IS-
PASS), pages 122–132, Apr. 2016. doi: 10.1109/IS-
PASS.2016.7482080.

[88] A. Panwar, R. Achermann, A. Basu, A. Bhattacharjee,
K. Gopinath, and J. Gandhi. Fast local page-tables
for virtualized NUMA servers with vMitosis. In Pro-
ceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, pages 194–210, 2021. doi:
10.1145/3445814.3446709.

[89] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and
S. Mangard. DRAMA: Exploiting DRAM addressing
for Cross-CPU attacks. In Proceedings of the 25th
USENIX Security Symposium, pages 565–581, 2016.
https://www.usenix.org/conference/usenixsecurity16/
technical-sessions/presentation/pessl.

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 18

https://doi.org/10.1145/3373376.3378467
https://www.devicetree.org/specifications
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/legacy/events/hotpar09/tech/full_papers/liu/liu.pdf
https://www.usenix.org/legacy/events/hotpar09/tech/full_papers/liu/liu.pdf
https://doi.org/10.1145/3173162.3173175
https://doi.org/10.1145/2818000.2818026
https://techcommunity.microsoft.com/t5/virtualization/hyper-v-hyperclear-mitigation-for-l1-terminal-fault/ba-p/382429
https://techcommunity.microsoft.com/t5/virtualization/hyper-v-hyperclear-mitigation-for-l1-terminal-fault/ba-p/382429
https://techcommunity.microsoft.com/t5/virtualization/hyper-v-hyperclear-mitigation-for-l1-terminal-fault/ba-p/382429
https://docs.microsoft.com/windows-server/virtualization/hyper-v/manage/manage-hyper-v-scheduler-types#the-core-scheduler
https://docs.microsoft.com/windows-server/virtualization/hyper-v/manage/manage-hyper-v-scheduler-types#the-core-scheduler
https://docs.microsoft.com/windows-server/virtualization/hyper-v/manage/manage-hyper-v-scheduler-types#the-core-scheduler
https://docs.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://docs.microsoft.com/en-us/azure/confidential-computing/confidential-vm-overview
https://docs.microsoft.com/en-us/azure/virtual-machines/maintenance-and-updates
https://docs.microsoft.com/en-us/azure/virtual-machines/maintenance-and-updates
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://docs.microsoft.com/en-us/azure/virtual-machines/acu
https://docs.microsoft.com/en-us/azure/virtual-machines/acu
https://eprint.iacr.org/2017/618
https://unsat.cs.washington.edu/papers/nelson-hifive-tr.pdf
https://unsat.cs.washington.edu/papers/nelson-hifive-tr.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/cache-allocation-technology-usage-models.html
https://www.intel.com/content/www/us/en/developer/articles/technical/cache-allocation-technology-usage-models.html
https://www.intel.com/content/www/us/en/developer/articles/technical/cache-allocation-technology-usage-models.html
https://www.gao.gov/blog/solarwinds-cyberattack-demands-significant-federal-and-private-sector-response-infographic
https://www.gao.gov/blog/solarwinds-cyberattack-demands-significant-federal-and-private-sector-response-infographic
https://www.gao.gov/blog/solarwinds-cyberattack-demands-significant-federal-and-private-sector-response-infographic
https://doi.org/10.1145/3132747.3132781
https://doi.org/10.1109/ISPASS.2016.7482080
https://doi.org/10.1109/ISPASS.2016.7482080
https://doi.org/10.1145/3445814.3446709
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/pessl


[90] I. Puddu, M. Schneider, M. Haller, and S. Čap-
kun. Frontal attack: Leaking Control-Flow in
SGX via the CPU frontend. In Proceedings
of the 30th USENIX Security Symposium, pages
663–680, 2021. https://www.usenix.org/conference/
usenixsecurity21/presentation/puddu.

[91] H. Ragab, A. Milburn, K. Razavi, H. Bos, and C. Giuf-
frida. CrossTalk: Speculative data leaks across cores
are real. In Proceedings of the 42nd IEEE Sym-
posium on Security and Privacy, May 2021. doi:
10.1109/SP40001.2021.00020.

[92] Research and Markets. Bare metal cloud market
by service type, organization size, vertical, and
region – global forecast to 2026, Apr. 2021. Report
number 5316699 https://www.researchandmarkets.
com/reports/5316699/bare-metal-cloud-market-by-
service-type-compute.

[93] The RISC-V Instruction Set Manual, Voume II: Privi-
leged Architecture. RISC-V International, June 2019.
Ver. 20190608-Priv-MSU-Ratified https://riscv.org/
risc-v-isa.

[94] RISC-V Open Source Supervisor Binary Interface
(OpenSBI). RISC-V International, Jan. 2021. https:
//github.com/riscv/opensbi.

[95] OpenSBI Domain Support. RISC-V OpenSBI, Nov.
2020. https://github.com/riscv/opensbi/blob/c0d2baa/
docs/domain_support.md.

[96] J. R. Sanchez Vicarte, P. Shome, N. Nayak, C. Trip-
pel, A. Morrison, D. Kohlbrenner, and C. W. Fletcher.
Opening Pandora’s Box: A systematic study of new
ways microarchitecture can leak private data. In Pro-
ceedings of the 48th IEEE International Symposium
on Computer Architecture, pages 347–360, 2021. doi:
10.1109/ISCA52012.2021.00035.

[97] J. R. Sanchez Vicarte, M. Flanders, R. Paccagnella,
G. Garrett-Grossman, A. Morrison, C. W. Fletcher,
and D. Kohlbrenner. Augury: Using data memory-
dependent prefetchers to leak data at rest. In Proceed-
ings of the 43rd IEEE Symposium on Security and
Privacy, 2022. doi: 10.1109/SP46214.2022.00089.

[98] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck,
J. Stecklina, T. Prescher, and D. Gruss. ZombieLoad:
Cross-privilege-boundary data sampling. In Proceed-
ings of the 26th ACM Conference on Computer and
Communications Security, pages 753–768, 2019. doi:
10.1145/3319535.3354252.

[99] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A
tiny hypervisor to provide lifetime kernel code integrity
for commodity OSes. In Proceedings of the 21st ACM

Symposium on Operating Systems Principles, pages
335–350, 2007. doi: 10.1145/1294261.1294294.

[100] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote,
S. Hasegawa, T. Horie, M. Hirano, K. Kourai,
Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and
K. Kato. BitVisor: A thin hypervisor for enforcing I/O
device security. In Proceedings of the 5th ACM Interna-
tional Conference on Virtual Execution Environments,
pages 121–130, 2009. doi: 10.1145/1508293.1508311.

[101] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena.
Preventing page faults from telling your secrets. In
Proceedings of the 11th ACM Asia Conference on Com-
puter and Communications Security, pages 317–328,
2016. doi: 10.1145/2897845.2897885.

[102] SiFive FU540-C000 Manual. SiFive, 1.0 edition, Apr.
2018. https://static.dev.sifive.com/FU540-C000-v1.0.
pdf.

[103] SiFive WorldGuard White Paper, v1.2. SiFive, Dec.
2020. https://sifive.cdn.prismic.io/sifive/aa27fffb-cf24-
4077-8103-682f26141b69_WorldGuard_White_
Paper_v1.2.pdf.

[104] D. Skarlatos, M. Yan, B. Gopireddy, R. Sprabery,
J. Torrellas, and C. W. Fletcher. Microscope: En-
abling microarchitectural replay attacks. In Proceed-
ings of the 46th IEEE International Symposium on
Computer Architecture, pages 318–331, 2019. doi:
10.1109/MM.2020.2986204.

[105] U. Steinberg and B. Kauer. NOVA: A microhypervisor-
based secure virtualization architecture. In Pro-
ceedings of the 5th ACM European Conference
on Computer Systems, pages 209–222, 2010. doi:
10.1145/1755913.1755935.

[106] J. Szefer and R. B. Lee. Architectural support
for hypervisor-secure virtualization. In Proceed-
ings of the 17th ACM International Conference on
Architectural Support for Programming Languages
and Operating Systems, pages 437–450, 2012. doi:
10.1145/2150976.2151022.

[107] J. Szefer, E. Keller, R. B. Lee, and J. Rexford. Elimi-
nating the hypervisor attack surface for a more secure
cloud. In Proceedings of the 18th ACM Conference on
Computer and Communications Security, pages 401–
412, 2011. doi: 10.1145/2046707.2046754.

[108] B. Teabe, P. Yuhala, A. Tchana, F. Hermenier, D. Hag-
imont, and G. Muller. (No)Compromis: Paging
virtualization is not a fatality. In Proceedings of
the 17th ACM International Conference on Virtual
Execution Environments, pages 43–56, 2021. doi:
10.1145/3453933.3454013.

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 19

https://www.usenix.org/conference/usenixsecurity21/presentation/puddu
https://www.usenix.org/conference/usenixsecurity21/presentation/puddu
https://doi.org/10.1109/SP40001.2021.00020
https://www.researchandmarkets.com/reports/5316699/bare-metal-cloud-market-by-service-type-compute
https://www.researchandmarkets.com/reports/5316699/bare-metal-cloud-market-by-service-type-compute
https://www.researchandmarkets.com/reports/5316699/bare-metal-cloud-market-by-service-type-compute
https://riscv.org/risc-v-isa
https://riscv.org/risc-v-isa
https://github.com/riscv/opensbi
https://github.com/riscv/opensbi
https://github.com/riscv/opensbi/blob/c0d2baa/docs/domain_support.md
https://github.com/riscv/opensbi/blob/c0d2baa/docs/domain_support.md
https://doi.org/10.1109/ISCA52012.2021.00035
https://doi.org/10.1109/SP46214.2022.00089
https://doi.org/10.1145/3319535.3354252
https://doi.org/10.1145/1294261.1294294
https://doi.org/10.1145/1508293.1508311
https://doi.org/10.1145/2897845.2897885
https://static.dev.sifive.com/FU540-C000-v1.0.pdf
https://static.dev.sifive.com/FU540-C000-v1.0.pdf
https://sifive.cdn.prismic.io/sifive/aa27fffb-cf24-4077-8103-682f26141b69_WorldGuard_White_Paper_v1.2.pdf
https://sifive.cdn.prismic.io/sifive/aa27fffb-cf24-4077-8103-682f26141b69_WorldGuard_White_Paper_v1.2.pdf
https://sifive.cdn.prismic.io/sifive/aa27fffb-cf24-4077-8103-682f26141b69_WorldGuard_White_Paper_v1.2.pdf
https://doi.org/10.1109/MM.2020.2986204
https://doi.org/10.1145/1755913.1755935
https://doi.org/10.1145/2150976.2151022
https://doi.org/10.1145/2046707.2046754
https://doi.org/10.1145/3453933.3454013


[109] Advanced Configuration and Power Interface (ACPI)
Specification. UEFI Forum, 6.4 edition, Jan. 2021.
https://uefi.org/specifications.

[110] J. Van Bulck, F. Piessens, and R. Strackx. SGX-Step:
A practical attack framework for precise enclave exe-
cution control. In Proceedings of the 2nd Workshop on
System Software for Trusted Execution, 2017. ISBN
978-1-4503-5097-6. doi: 10.1145/3152701.3152706.

[111] J. Van Bulck, N. Weichbrodt, R. Kapitza, F. Piessens,
and R. Strackx. Telling your secrets without
page faults: Stealthy page table-based attacks on
enclaved execution. In Proceedings of the 26th
USENIX Security Symposium, pages 1041–1056, 2017.
https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/van-bulck.

[112] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,
B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,
Y. Yarom, and R. Strackx. Foreshadow: Extracting
the keys to the Intel SGX kingdom with transient
out-of-order execution. In Proceedings of the 27th
USENIX Security Symposium, pages 991–1008, 2018.
ISBN 978-1-939133-04-5. https://www.usenix.org/
conference/usenixsecurity18/presentation/bulck.

[113] J. Van Bulck, F. Piessens, and R. Strackx. Neme-
sis: Studying microarchitectural timing leaks in rudi-
mentary CPU interrupt logic. In Proceedings of
the 25th ACM Conference on Computer and Com-
munications Security, pages 178–195, 2018. doi:
10.1145/3243734.3243822.

[114] S. van Schaik, A. Milburn, S. Österlund, P. Frigo,
G. Maisuradze, K. Razavi, H. Bos, and C. Giuffrida.
RIDL: Rogue in-flight data load. In Proceedings of the
40th IEEE Symposium on Security and Privacy, pages
88–105, May 2019. doi: 10.1109/SP.2019.00087.

[115] S. van Schaik, A. Kwong, D. Genkin, and Y. Yarom.
SGAxe: How SGX fails in practice, 2020. https://sgaxe.
com/files/SGAxe.pdf.

[116] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and
Y. Yarom. CacheOut: Leaking data on Intel CPUs
via cache evictions. In Proceedings of the 42nd IEEE
Symposium on Security and Privacy, pages 339–354,
2021. doi: 10.1109/SP40001.2021.00064.

[117] C. Waldspurger and M. Rosenblum. I/O virtualization.
Communications of the ACM, 55(1):66–73, Jan. 2012.
doi: 10.1145/2063176.2063194.

[118] C. A. Waldspurger. Memory resource manage-
ment in VMware ESX Server. In Proceed-
ings of the 5th USENIX Symposium on Oper-
ating Systems Design and Implementation, Dec.

2002. https://www.usenix.org/legacy/events/osdi02/
tech/waldspurger/waldspurger.pdf.

[119] C. Wang, B. Urgaonkar, N. Nasiriani, and G. Kesidis.
Using burstable instances in the public cloud: Why,
when and how? Proceedings of ACM on Measurement
and Analysis of Computing Systems, 1(1), June 2017.
doi: 10.1145/3084448.

[120] X. Wang, Y. Shi, Y. Dai, Y. Qi, J. Ren, and Y. Xuan.
TrustOSV: Building trustworthy executing environ-
ment with commodity hardware for a safe cloud. Jour-
nal of Computers, 9(10):2303–2314, Oct. 2014. ISSN
1796-203X. http://www.jcomputers.us/vol9/jcp0910-
07.pdf.

[121] Z. Wang, C. Wu, M. Grace, and X. Jiang. Isolating
commodity hosted hypervisors with HyperLock. In
Proceedings of the 7th ACM European Conference
on Computer Systems, pages 127–140, 2012. ISBN
9781450312233. doi: 10.1145/2168836.2168850.

[122] D. Wentzlaff, C. J. Jackson, P. Griffin, and A. Agar-
wal. Configurable fine-grain protection for mul-
ticore processor virtualization. In Proceedings of
the 39th IEEE International Symposium on Com-
puter Architecture, pages 464–475, 2012. doi:
10.1109/ISCA.2012.6237040.

[123] R. West, Y. Li, E. Missimer, and M. Danish. A virtu-
alized separation kernel for mixed-criticality systems.
ACM Transactions on Computer Systems, 34(3), June
2016. doi: 10.1145/2935748.

[124] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers,
E. Cecchet, and M. D. Corner. Memory buddies: Ex-
ploiting page sharing for smart colocation in virtual-
ized data centers. In Proceedings of the 5th ACM
International Conference on Virtual Execution Envi-
ronments, pages 31–40, 2009. ISBN 9781605583754.
doi: 10.1145/1508293.1508299.

[125] C. Wu, Z. Wang, and X. Jiang. Taming hosted
hypervisors with (mostly) deprivileged execution.
In Proceedings of the 20th Annual Network and
Distributed System Security Symposium, Feb. 2013.
https://www.ndss-symposium.org/ndss2013/ndss-
2013-programme/taming-hosted-hypervisors-mostly-
deprivileged-execution.

[126] Y. Xia, Y. Liu, and H. Chen. Architecture support for
guest-transparent VM protection from untrusted hyper-
visor and physical attacks. In Proceedings of the 19th
IEEE International Symposium on High-Performance
Computer Architecture, pages 246–257, 2013. doi:
10.1109/HPCA.2013.6522323.

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 20

https://uefi.org/specifications
https://doi.org/10.1145/3152701.3152706
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/van-bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1145/3243734.3243822
https://doi.org/10.1109/SP.2019.00087
https://sgaxe.com/files/SGAxe.pdf
https://sgaxe.com/files/SGAxe.pdf
https://doi.org/10.1109/SP40001.2021.00064
https://doi.org/10.1145/2063176.2063194
https://www.usenix.org/legacy/events/osdi02/tech/waldspurger/waldspurger.pdf
https://www.usenix.org/legacy/events/osdi02/tech/waldspurger/waldspurger.pdf
https://doi.org/10.1145/3084448
http://www.jcomputers.us/vol9/jcp0910-07.pdf
http://www.jcomputers.us/vol9/jcp0910-07.pdf
https://doi.org/10.1145/2168836.2168850
https://doi.org/10.1109/ISCA.2012.6237040
https://doi.org/10.1145/2935748
https://doi.org/10.1145/1508293.1508299
https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/taming-hosted-hypervisors-mostly-deprivileged-execution
https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/taming-hosted-hypervisors-mostly-deprivileged-execution
https://www.ndss-symposium.org/ndss2013/ndss-2013-programme/taming-hosted-hypervisors-mostly-deprivileged-execution
https://doi.org/10.1109/HPCA.2013.6522323


[127] M. Xu, M. Huber, Z. Sun, P. England, M. Peinado,
S. Lee, A. Marochko, D. Mattoon, R. Spiger, and
S. Thom. Dominance as a new trusted computing
primitive for the internet of things. In Proceedings of
the 40th IEEE Symposium on Security and Privacy,
pages 1415–1430, 2019. doi: 10.1109/SP.2019.00084.

[128] Y. Xu, W. Cui, and M. Peinado. Controlled-channel
attacks: Deterministic side-channels for untrusted op-
erating systems. In Proceedings of the 36th IEEE

Symposium on Security and Privacy, pages 640–656,
May 2015. doi: 10.1109/SP.2015.45.

[129] X. Zhang, X. Zheng, Z. Wang, Q. Li, J. Fu, Y. Zhang,
and Y. Shen. Fast and scalable VMM live up-
grade in large cloud infrastructure. In Proceed-
ings of the 24th ACM International Conference on
Architectural Support for Programming Languages
and Operating Systems, pages 93–105, 2019. doi:
10.1145/3297858.3304034.

To appear in 17th USENIX Symposium on Operating Systems Design and Implementation. 21

https://doi.org/{10.1109/SP.2019.00084}
https://doi.org/10.1109/SP.2015.45
https://doi.org/10.1145/3297858.3304034

	Introduction
	Background and motivation
	Hardware-accelerated virtualization
	Confidential VMs
	Side channels in processor-based TEEs
	VMs as used in public clouds
	Summary

	Design
	Overview and terminology
	Security properties and threat model
	Hardware support for core slicing
	Slice management
	Attestation and memory encryption

	RISC-V Prototype
	x86 Prototype
	Evaluation
	Performance
	Security
	Hardware complexity
	Impact of physical contiguity

	Discussion: core slicing beyond RISC-V
	Related work
	Conclusion

