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Abstract
The goal of a computer system is to run an application

workload securely, reliably, efficiently, and fast. A com-
puter’s hardware architecture and operating system exist
to support this goal, and it would be nice if they cooper-
ated as effectively as possible. Yet there is a growing gap
between architectural research and OS research, which
seems to be the result of poor communication about what
actually matters.

In this paper, we discuss this gap and what to do about
it. We illustrate the opportunities for closing the gap us-
ing examples from some recent OS research.

1 Introduction
For too long, operating systems researchers and devel-

opers have pretty much taken whatever computer archi-
tects have dished out. With occasional exceptions (e.g.,
virtualization support), architecture researchers do not
appear to have sought or encouraged innovations that
would improve the execution environment for an OS.
Even worse, many do not bother to simulate and report
on OS behavior when evaluating their proposals.

Times have changed: architects are running out of
new ideas that lead to significant application-level per-
formance improvements; we must now rely on improved
parallelism. But parallelism stresses the very issues that
operating systems research has focused on: distribution,
resource management, I/O, etc. Also, many modern ap-
plications spend significant execution time in OS func-
tions; it really does matter whether a CPU works well on
OS code. We believe that closer collaboration between
OS and architecture researchers could yield real benefits.

Alas, the disconnect between OS and architectural re-
search seems to be growing, at a time when we should be
trying to shrink it. In this paper, we discuss some prob-
lems arising from this gap, try to identify its causes, and
consider ways to bridge it. We illustrate our discussions
with examples drawn from recent OS research.

2 What has caused the gap?
Scientific computing papers often, and somewhat

amusingly, refer to CPU time spent in the OS as “noise”
(e.g., [19]). Perhaps for HPC users, the operating sys-
tem really is just an annoyance, but for most computers,
from sensor-net nodes through handhelds and laptops to
servers, the OS does useful work, and often a lot of it.

There is some evidence that, for many real-world ap-
plications, plenty of execution time is spent in the OS [9].

(We assume a loose definition of “the OS” – it’s more
than just the kernel, since in many cases people have
moved OS functionality into user-mode libraries.) Per-
haps this is not yetampleevidence, although we suspect
this is mostly for lack of a systematic study.

But computer architects, from the evidence available
in the scientific literature, assume that the OS does
not exist – except perhaps when it magically manages
application-thread resources that hardware cannot. Ar-
chitecture papers commonly use application-only bench-
marks, and seldom account for the interference be-
tween application and OS execution (there are, of course,
counter-examples [9]). In short, while architecture pa-
pers sometimes pay lip service to the OS, they rarely dis-
cuss the impact of architecture on OS behavior.

Meanwhile, a typical OS paper usually uses the phrase
“on commodity hardware”. As a community, we assume
we are stuck with whatever flaws the hardware has.

We see several infrastructural reasons why architec-
ture researchers have been ignoring the OS: lack of quan-
titative evidence for the importance of OS execution;
lack of an effective simulation environment; and lack of
appropriate benchmarks.

2.1 How important is OS execution?
One obvious cultural difference between OS and ar-

chitecture researchers is that OS researchers implicitly
assume that operating system performance matters. But
how do weknow that OS performance really does mat-
ter? We typically test our system improvements on a
small set of applications, or even microbenchmarks, and
then (usually with scant evidence) generalize to declare
that we’ve done something truly useful. Various papers
that have tried to demonstrate the importance of OS exe-
cution (e.g., [8, 11]) generally pick a few applications for
their benchmarks, so it is hard convince architecture re-
searchers that, in the general case, OS execution matters.

We know of no quantitative study that has attempted
to measure the importance of OS execution in the wild
rather than on benchmarks. As a baby step in this di-
rection, we obtainedcollectl logs1 from several pro-
duction Linux servers running a variety of applications:
a weather forecasting system (WRF), NFS server, Poly-
Serve storage system (PS), and academic Grid system,
with unknown workload. These logs contain samples
taken every 1–10 seconds (they were originally collected

1http://collectl.sourceforge.net/
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for various other purposes) of the percentage of time
spent in user and in kernel mode, from which we com-
puted the fraction of non-idle CPU time in kernel mode.2
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Figure 1: CDFs of non-idle time in kernel mode

Fig. 1 shows that kernel-mode execution varies from
almost 0% of non-idle cycles (for WRF, a compute-
bound program) to almost 100% (for NFS, which runs
entirely in kernel mode); both PS and GRID spend a con-
siderable fraction of time in kernel mode. While the sys-
tems in this small and arbitrary sample might not be rep-
resentative, the results suggest that OS execution cycles
really do matter.

2.2 The limitations of simulation
Given the complexity of modern silicon, it has been

almost impossible to do architectural research except via
simulation. (Hardware emulation is just now becom-
ing a viable option, which we discuss further in Sec. 5.)
However, most widely-available, well-supported simu-
lators do not do full-system simulation of low-level ar-
chitectural behavior – that is, you can’t run a real OS
on them. There are a few exceptions, such as M5 [2]
and Mambo [3], but until recently, these did not support
the x86 ISA (M5’s x86 support has just recently become
barely usable). So it has been hard to validate against
modern hardware, or to make a truly convincing case.

The lack of a cycle-level simulator that can run a real
operating system has created a dilemma for architectural
researchers, and appears to be one of the main reasons
why they tend to ignore OS code.

Is x86 the problem? The x86 architecture currently
dominates the server and desktop markets, notwithstand-
ing some recent inroads by others, and OS researchers
and developers have focussed most of their recent ef-
forts on x86. Because of the simulator problem, however,
some architects have resisted using x86.

Dean Tullsen [20] remarks that x86 is so idiosyn-
cratic and complex that doing architectural research on
an x86 simulator forces one to “spend all your time solv-
ing things specifically broken on the x86 rather than fun-
damental architectural problems.” He thus intentionally
uses a “dead ISA” – but this makes it harder to incorpo-
rate a modern OS.

2We recognize that “kernel mode” and “operating system” can be
different things, even on a monolithic kernel, butcollectl cannot
measure time spent in daemons, libraries, etc.

2.3 Inappropriate or inadequate benchmarks
Architecture researchers believe in quantitative mea-

surements, which is good; they believe in shared bench-
marks, which is good; but the benchmarks they use
(SPEC CPU, SPLASH, PARSEC) seldom involve the
operating system. This is bad.

There are some benchmarks that stress operating sys-
tem functions (e.g., SPECweb, RUBiS, TPC-W).3 Ar-
chitecture researchers almost never use these, for a few
reasons. First, they are hard to get running, and often
have complex parameter settings. Second, we often want
to simulate networks of computers, and this greatly com-
plicates the problem of getting something running.

Third, even if one has a full-system simulator, getting
results in a reasonable number of days requires running
the benchmark for just a few seconds (or less) of simu-
lated time, requiring the benchmark to be seriously per-
verted – most of these benchmarks are not designed to
give useful results so quickly. David Patterson has ob-
served that architects do not understand whether this time
is enough to provide valid results on OS-intensive bench-
marks [10]; also, architects do not understand how many
simulation trials are required for statistical validity, given
that OS behavior is often non-deterministic.

Dean Tullsen has observed that “history has shown
that the best way to spawn a ton of [architecture] research
is to provide a tool,” such as a new benchmark suite. But
the challenge is to make a benchmark as easy to run as
SPECint – with OS benchmarks, “minor things in the OS
create way too much noise in the results.” [20] If we want
architecture researchers to think about support for oper-
ating systems, we will probably need to help them with
a suite of benchmarks that stress the things that we care
about, and are pre-packaged to run easily (without a lot
of thought about parameters) on cycle-level simulators.

There are a lot of possibilities for OS-relevant bench-
marks; in addition to those listed above, one might in-
clude Hadoop, or a virtualization management work-
load [15]. (Micro-benchmarks, such as LMbench, also
have their uses, but must be used with care. Null system-
calls don’t exercise TLB coverage or cache flush penalty,
which only kicks in after a few hundred cycles.) The
trick will be getting them to run, with useful results, on a
simulator: e.g., a benchmark that expresses the “essence
of Hadoop” in just 1 second.

3 Design principles for architecture
In this section, we outline design principles for new

features or extensions to processor architecture, illus-
trated by what we see as missed opportunities in previous
extensions, which failed to consider the needs of the OS.

P1: Facilitate resource multiplexing. The role of an
OS is to share the hardware and enforce protection be-

3Modern applications are often composed of many interactingpro-
cesses or threads, but even these benchmarks don’t really exercise this.
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tween applications. Thus, any new hardware functional-
ity must be efficiently multiplexed (or virtualized) by the
OS. Often good ideas are rendered useless because they
assume there’s only one program running.

For example, Intel’s recent Single-chip Cloud Com-
puter4 (SCC) [6] provides 8KB of scratchpad memory
per core to support fast inter-core message passing. Since
an 8KB region is mapped by only two pages, mediating
access to this resource forces the use of kernel mode to
send a message. Kernel entry cost (≈10µs) overwhelms
the underlying message-transfer cost (only 10ns).

P2: Keep mechanisms orthogonal. New features
should be orthogonal to existing ones, not overlaid on
them. One cannot anticipate all uses of a feature, so cou-
pling it to another architectural mechanism needlessly re-
stricts usability.

For example, the AMD-V virtualization extensions
support a tagged TLB (an old idea but new to x86) which
allows an expensive TLB flush to be avoided when con-
text switching. However, since the tag was added to
the VM control block, TLB tags are only usable by VM
guests, and the TLB must still be flushed when switching
between non-VM address spaces.

A corollary is: Don’t enforce arbitrary limits. OSes
are good at virtualizing finite resources so that they look
(almost) infinite, and architects should not stymie this
process. For example, the limited size of tags in TLBs is
not a problem if they are exposed: the OS uses them as a
cache for a larger set of process identifiers.

P3: Avoid over-abstraction. Hardware designers
should not abstract new processor functionality and fea-
tures from the OS, nor allow (legitimate) concerns about
backward compatibility to prevent the future use of new
mechanisms in unintended ways.

For example, Intel’s introduction of simultaneous mul-
tithreading (hyper-threading) to the x86 architecture was
completely backwards-compatible. So as to require
no changes to existing multiprocessor OSes, hardware
threads appear simply as processors. An unfortunate
consequence is that there is no efficient way for code run-
ning on one thread of a multi-threaded core to observe
the state of, interrupt or signal the other thread: it must
raise a heavyweight inter-processor interrupt (IPI).

P4: Stay independent of kernel architecture.With
suitable checks, all new mechanisms should work cor-
rectly and efficiently in user mode as well as kernel
mode. Without rehashing the microkernel debate, we
claim many OS functions need not, and should not, in-
cur the cycle cost or security risks of kernel entry.

For example, AMD’s proposed advanced synchroniza-
tion facility (ASF) [4] adds hardware support for mem-
ory transactions via instructions that register interest in

4We are grateful for Intel for access to SCC hardware and many
helpful discussions.

an area of memory (e.g. a set of cache lines) and work
like setjmp: subsequent writes to the region by another
core cause a return to the instruction, having discarded all
local writes to the region, and with a register value used
to conditionally branch to rollback code.

While a plausible implementation of transaction roll-
back, this facility could have had a range of other (pos-
sibly more important) applications, e.g. the notification
mechanism we propose in Sec. 4.1. Unfortunately, this
is another case of over-abstraction: while it could be ex-
pressed as asimplerasynchronous subroutine call (sav-
ing state), one register value is clobbered, making it im-
possible to resume from the abort point.

Worse, it assumes a specific OS structure and kernel-
mediated usage model: the state saved on abort (pro-
gram counter and stack pointer) is only available in ker-
nel mode through model-specific registers (MSRs), re-
quiring both an expensive trap and a slow (10s or 100s of
cycles) instruction to access.

4 Modest proposals
We offer examples of hardware features that could

support recent advances in OS research. We draw on our
own published work to make the discussion concrete, but
are not the only researchers to propose these facilities.

4.1 Inter-core communication
Construction of a scalable OS can benefit from primi-

tives for inter-core communication and coordination:
Lightweight inter-core messages:Your computer is

a distributed system [1], and we argued that the OS
should be viewed as a distributed system, communicat-
ing internally by messages rather than shared memory.
But, as we wrote, “On current commodity hardware”
(that phrase again!) “the cache coherence protocol is ul-
timately our message transport.”

True core-to-core message-passing would be better –
a mechanism which already exists to support cache co-
herence, but is not exposed to software. This mechanism
could be exposed as a means to proactively write data
to a remote core’s cache or scratchpad memory, avoiding
the stall imposed by the cache-coherence protocol for the
receiver to fetch the message payload. Beehive [18] and
SCC provide this, but SCC doesn’t allow safe, efficient
use by multiple applications, and Beehive doesn’t try.

An alternative core-to-core messaging interface could
allow a sender to insert cache lines into a remote core’s
caches. This would be advisory: as with software
prefetch instructions, lines would be transferred with low
priority to a mid-level cache (e.g. L2), allowing data to be
placed close to where it will be used without impacting
the execution of the remote core or stalling the sender.

Lightweight inter-core notifications: Efficient data
transfer is not enough: messages require notification
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too.5 Such a facility must be extremely lightweight,
but not necessarily reliable (one can always fall back to
polling). Unfortunately, today IPIs are the only option.

We favor lightweight control transfer, whereby a core
is vectored to a specific instruction address in the same
protection domain, saving only the minimum context
needed to resume afterward. We want to change the con-
trol flow of another coreiff a specific application is run-
ning, not just notify an entire core. Authorization is re-
quired: if the target core is not running the application,
the sender can fall back on IPIs or wait for polling.

4.2 Faster system calls
On many (not all) architectures, a kernel crossing is

alarmingly expensive, and includes much unnecessary
state management. Processor designers have devoted lit-
tle effort to efficient context switching.

FlexSC [13] attempts to alleviate this for Linux using
exception-less system calls, and uses shared memory and
software polling for inter-core system calls. FlexSC is
forced to batch multiple invocations into a single control
transfer to amortize the cost of both same-core and inter-
core system calls. Better architectural support for inter-
core communication, combined with a lightweight local
kernel call, would make FlexSC much more efficient.

4.3 Software controlled cache management
Caches are a large (and increasing) factor in software

performance, but are mostly functionally transparent to
software. We believe exposing greater control over cache
behavior to the OS could have significant performance
benefits. We discuss two examples.

Controlling cache coherence: Most commercial
architectures implement system-wide cache-coherence,
but as the number of cores and private caches grows,
mandatory coherence looks increasingly like over-
abstraction of resources. Partly for this reason, some ex-
perimental systems such as SCC and Beehive are non-
coherent, and some research OSes like Barrelfish run
without cache coherence. Given that we will run appli-
cations that rely on hardware coherence, the hardware
should allow the OS to turn off coherence when we know
it is not needed, e.g. for an address space, region, or core.

Selective coherence introduces challenges: turning co-
herence on or off requires explicit cache flushing or in-
validation. This must be possible from user mode, so that
applications can directly manage non-coherent memory.

Software managed cache replacement:Caches are
getting bigger. Hardware-only replacement policies are
becoming difficult and inefficient, and the OS should
manage this real-estate – it has semantic information not
available to hardware. Dynamic partitioning of shared

5Architects (including the SCC designers) seem to ignore notifica-
tion, perhaps due to a focus on HPC workloads where one application
spins on a barrier or to receive.

caches [16] or reducing space allocated to “polluting”
memory pages [14] improves performance. Today, these
techniques must be implemented indirectly usingpage
coloring, which is crude and expensive. Architects and
OS researchers should collaborate to design a clean, effi-
cient interface.

4.4 Better performance counters
One traditional OS function is to manage resources for

contending processes and threads. As hardware becomes
more complex, with more resources to consider, this task
becomes harder, largely because the details are hidden
from the OS. Hardware performance counters (HPCs)
would seem to be an ideal interface between hardware
and OS, and potentially allow the OS to improve appli-
cation performance significantly [12, 14, 16]. However,
making these techniques useful beyond research OSes
requires architectural change.

We get the impression that chip designers underesti-
mate the value of HPCs, and do not really understand
how software could use them. (These problems arenot
the fault of architecture researchers, who have tried to
get chip vendors to fix things, and failed [10].) We urge
architects and vendors to consider HPCs as a general OS
facility, rather than simply support for code optimization.

Most HPCs are poorly documented, and inconsistent
even between CPUs from the same vendor. HPCs should
be usable outside the kernel, and therefore easy for the
OS to multiplex among applications [22]. There are too
few HPCs to be generally useful, so one has to virtualize
them, which causes inaccuracy. Sometimes the overhead
of using them is too high, which necessitates complex
tricks to minimize uses.

Flexible specification of the events counted (filters on
event parameters) would greatly reduce both overhead
and complexity of using HPCs within the OS. Further-
more, enhancing the HPCs with context logging func-
tionality (such as that provided with Intel’s precise event-
based sampling (PEBS) facility) allows the OS to in-
fer much information about memory operations, and the
ability to spill event counts to memory avoids the trap of
arbitrary limits on HPCs as a resource. A combination
of PEBS-style state logging and filter programmability
would open up a range of OS design ideas.

5 Closing the gap
If OS researchers merely complain or issue wish-lists

to the architecture community, this will not encourage
collaboration. We suggest concrete steps to help draw the
communities together – these are starting points that raise
further questions, and maybe even research directions.

Venues: High-profile publishing venues can motivate
collaboration between researchers. ASPLOS was created
to bring OS and architecture researchers together, but
while both communities attend, very few submissions fo-
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cus on work which includes both architecture and OS re-
search. Perhaps PC chairs and members could make an
effort to encourage collaborative papers.

Emulators: Sec. 2.2 described numerous problems
with simulation. David Patterson says “simulators are
dead” – they do not parallelize, and since CPU cores
are not getting faster, the ratio of simulated to elapsed
time is not going to increase [10]. Instead, FPGA-based
re-programmable emulators, already extensively used by
processor vendors, are the only effective way to test ar-
chitectural ideas on long-running benchmarks [17]. Such
hardware is now available to academics [5, 21]. Some
emulators [21] can run a real OS, but emulator builders
face a tension between adding full OS support, and using
time and gates to implement their own favorite designs.

For emulation to help bridge the gap, researchers must
be able to learn a system and share results. The NetF-
PGA project [7] has been successful in supporting re-
search into hardware packet routers, an area that previ-
ously was forbiddingly difficult due to lack of coopera-
tion from router vendors.

Providing a solid, common platform for multi-core OS
and architecture research will require considerable in-
vestment and support, but is likely to pay dividends.

Benchmarks: Since benchmarks play such a large
role in driving architecture research, they should be
aligned with the needs of OS implementation. The high-
level goal for such benchmarks is clear: they should en-
courage innovation in computer architecture and OS de-
sign which improves the performance of OS-intensive
application workloads. Even the process of devising
(and, subsequently revising) suitable benchmarks will
have to involve representatives from both communities,
and thereby help to close the gap.

Microbenchmarks are a good starting point, e.g. mea-
suring kernel entry or exit, interrupt latency, context
switch time (suitably defined), etc. Microbenchmarks
are easier to decouple from a particular operating sys-
tem, encouraging innovation in that space as well.

This in turn means these benchmarks should measure
the performance of a combination of hardware and soft-
ware. If the software is fixed by the benchmark (e.g. as
with SPEC), it is hard to introduce architectural innova-
tions in the OS programming interface to hardware. Fur-
thermore, the benchmarks must deliver valid results in
brief runs on simulators, or must be ported to (not just
“portable to”) emulation-based platforms.

6 Summary
Architecture researchers should explore how to sup-

port OS execution, and view the OS as a performance-
critical part of a system. However, they should not view
it as fixed (Linux or Windows) but open a dialog with
OS researchers about what is possible or desirable. Con-
versely, OS researchers should not blindly accept com-

modity hardware, and open their minds to evolving ar-
chitecture alongside OS design.

That said, we are wary of uncritically embracing the
idea that hardware can be changed arbitrarily to suit the
OS, or vice versa. The constraint of commodity hard-
ware in OS research has tended to keep us honest, and
we do not want to see papers justify designs despite seri-
ous problems that “can be fixed with suitable hardware.”

In the end this requires not merely dialog, but close
collaboration at the hardware/software interface.
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