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Abstract
C remains the language of choice for hardware programming (de-
vice drivers, bus configuration, etc.): it is fast, allows low-level ac-
cess, and is trusted by OS developers. However, the algorithms re-
quired to configure and reconfigure hardware devices and intercon-
nects are becoming more complex and diverse, with the added bur-
den of legacy support, “quirks”, and hardware bugs to work around.
Even programming PCI bridges in a modern PC is a surprisingly
complex problem, and is getting worse as new functionality such
as hotplug appears. Existing approaches use relatively simple algo-
rithms, hard-coded in C and closely coupled with low-level register
access code, generally leading to suboptimal configurations.

We investigate the merits and drawbacks of a new approach:
separating hardware configuration logic (algorithms to determine
configuration parameter values) from mechanism (programming
device registers). The latter we keep in C, and the former we encode
in a declarative programming language with constraint-satisfaction
extensions. As a test case, we have implemented full PCI configura-
tion, resource allocation, and interrupt assignment in the Barrelfish
research operating system, using a concise expression of efficient
algorithms in constraint logic programming. We show that the ap-
proach is tractable, and can successfully configure a wide range
of PCs with competitive runtime cost. Moreover, it requires about
half the code of the C-based approach in Linux while offering con-
siderably more functionality. Additionally it easily accommodates
adaptations such as hotplug, fixed regions, and “quirks”.

Categories and Subject Descriptors D.1.6 [Software]: Program-
ming Techniques—Logic Programming; D.4.9 [Software]: Oper-
ating Systems—Systems Programs and Utilities

General Terms Algorithms, Design, Languages

Keywords Constraint logic programming, Eclipse CLP, Hardware
programming, PCI configuration

1. Introduction
Although many attempts have been made to improve on it, C re-
mains the language of choice for writing code to program hardware,
including device drivers, bus configuration, and interrupt routing.
C is fast, provides low-level access to hardware registers, and is
trusted by OS developers.
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Figure 1. Example PCI tree with one root, three bridges, and 7
devices, showing the decoding of addresses from one physical
memory space (e.g. non-prefetchable). Bridge base addresses are
bounded by the union of the base and limit addresses of their
children.

However, trends in hardware are making efficient and correct
OS code for hardware access more difficult to write. Hardware
platforms and system interconnects are becoming more complex
and diverse, while at the same time it is increasingly important for
overall performance to derive efficient configurations of devices,
interrupts, and memory regions.

Configuring the hardware, I/O bridges and memory regions
by interacting with platform firmware, is a surprisingly complex
problem in a modern computer. The same is true for allocating and
routing interrupts, handling device hotplug, etc., and it is getting
worse as new functionality appears. Existing operating systems
code uses relatively simple algorithms to achieve these goals. These
algorithms are simple by the necessity of being hard-coded: they
require low-level access to device registers to achieve their goals,
and usually run early at system start-up within the OS kernel.

Figure 1 illustrates a simplified PCI-based device configura-
tion, and the way that it is handled by typical operating systems.
The OS code must allocate memory regions to each PCI device,
and each PCI bridge in the bus hierarchy, in such a way that ev-
ery device receives correctly-sized areas of memory in distinct
regions (prefetchable, and non-prefetchable) of two different ad-
dress spaces (I/O and memory). These areas must all be aligned to
device-specific boundaries, may not overlap, and should fit into the
total amount of physical address space available for such hardware
in the system.

We describe the PCI configuration problem in detail in Sec-
tion 2, but two factors make this allocation problem particularly
hard. First, hotplugging means that devices can come and go in the
hierarchy, which may entail reconfiguring entire subtrees, which is
in turn disruptive to running device drivers. Second, there are nu-
merous restrictions on device allocation: certain devices or bridges
must be placed at a fixed address, others incorrectly decode ad-
dresses not assigned to them, and platform hardware components
such as ACPI sometimes reserve regions of physical address space,
which means that the address ranges must be allocated “around”
these holes. As computer architectures become more complex, this
list of problems is likely to grow, and to vary widely from one sys-
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tem to another. We fully expect to see analogous issues for future
interconnects or platform functions.

Most existing OSes deal with this problem with simple algo-
rithms in C such as sorting devices by address range size, modified
with much special-case code. The result is complex and hard to de-
bug, and (as we show in Section 5) can lead to unpredictable and
inefficient allocation of space as devices are hotplugged. In some
cases such as Linux on Intel platforms, the OS does not even try to
solve the allocation problem, instead relying on the platform BIOS
to provide an initial allocation, which is difficult to change.

Our aim is to find techniques for this general class of resource
allocation that result in cleaner, smaller, more flexible code which
still accommodates the various quirks, bugs, and legacy restrictions
imposed by real-world hardware. Our goal is to make such OS code
easier to write and evolve over time, and more reliable in the face
of ever-more-complex hardware.

In this paper we investigate the costs and benefits of a radically
different approach: separating configuration logic, such as the algo-
rithms to determine which configuration parameter values should
be employed, from the configuration mechanism (actually reading
and writing device registers). The latter we keep in C as part of
the kernel, but the former we encode in a logic programming lan-
guage with constraint-solving extensions in the system knowledge
base [26], running as an OS service.

Hardware-related code can be roughly divided into “data path”
functionality (interrupt handlers, packet processing, descriptor
management, etc.), and configuration management (PCI program-
ming, ACPI initialization and interpretation, memory region and
I/O space allocation, etc.). Both are critical to the performance and
correct functioning of a system. However, whereas the former must
have bounded resource utilization, particularly in terms of its run-
time where it is often on the fast-path, the performance of the latter
code is instead measured in terms of the correctness and optimality
of the resource allocation and configuration it produces, while its
speed is less critical. As we have pointed out [26], these two areas
of functionality are at present typically implemented in the same
code base, inside the OS kernel, as low-level C code.

Our hypothesis is that the balance is tipping in favor of express-
ing configuration logic, and hardware configuration information, in
a rich and high-level language. This enables complex resource al-
location and configuration algorithms to be succinctly expressed,
while being more amenable to adaptation due to changes in hard-
ware technology, faulty hardware information (“quirks”), varying
resource constraints and optimization goals, and device hotplug.
Moreover, the same framework gives applications and user-level
runtimes greater visibility into the available hardware resources and
their current configuration.

We introduce three main contributions. First, in Section 2 we
use PCI as an example to demonstrate the complexity of hardware
configuration as an emerging issue in system software, and propose
the use of declarative language techniques to mitigate its complex-
ity as hardware becomes both more diverse and more complex.

Second, in Section 3 we describe in detail our initial approach to
PCI bus configuration using the ECLiPSe constraint logic program-
ming (CLP) system [2], a language with constraint-satisfaction ex-
tensions, and in Section 4 our solution to the related problem of
interrupt allocation. We have implemented full PCI configuration
and interrupt assignment for the Barrelfish [8] research operating,
using the system knowledge base’s (SKB) [26] CLP solver.

Finally, in Section 5 we present a combined evaluation of this
work, focusing on its complexity, adaptability, and performance in
comparison to the traditional approach, and in Section 6 discuss
our experience with the new approach so far. The drawbacks in-
clude the need for a complex code base for the language runtime,
and increased time to calculate configuration information. In ex-

change, the benefits include flexibility, efficiency of resulting con-
figurations, conciseness of expression, and easy accommodation of
special cases, and the ability to easily integrate extra information to
guide resource allocation. We also discuss how trends in hardware
and software are likely to affect this tradeoff.

2. Background: PCI allocation
Configuring the PCI bridges found in a typical modern computer is
emblematic of a wide class of hardware-related systems software
challenges: it involves resource discovery followed by allocation
of identifiers and ranges from compact spaces of identifiers and ad-
dresses. More importantly, a range of hardware bugs and/or ad-hoc
constraints on particular devices lead to a plethora of special cases
which make it hard to express a correct algorithm in imperative
terms. Worse, new hardware (whether system boards or devices)
appears all the time, and system software must continue to work,
or evolve to handle new cases with a minimum of disruptive engi-
neering effort.

In this section, we describe the PCI programming challenge in
detail. We start with the “idealized” problem, which appears rel-
atively straightforward, and progressively introduce the complexi-
ties that, combined, are the reason that even modern operating sys-
tems only partially solve the full problem.

2.1 PCI background
A PCI (or PCI Express) interconnect is logically an n-ary tree
whose internal nodes are bridges and whose leaves are devices
[9, 23]. The root of the tree is known as the root bridge or root
complex. Connections in the tree are known as buses (in legacy
PCI they are electrically buses, whereas in PCI Express the bus is a
logical abstraction over point-to-point messaging links). Non-root
bridges are said to link secondary buses (links to child bridges and
devices) to a primary bus (the link to the bridge’s parent). High-
end PCs often have two or four root complexes, and hence multiple
PCI trees within a single system. Non-root devices can be attached
to any bus in a PCI interconnect. Each device implements one or
more distinct functions. A PCI function is in fact what we think of
an independent “device” which has an own address represented by
the bus number, the device number and the function number and
which operates independently of other functions.

Driver software on host CPUs accesses PCI functions by issuing
memory reads and writes or (in the case of the x86 architecture) I/O
instructions. These requests are routed down the tree by the bridges,
before being decoded by a single leaf device. Each function de-
codes a portion of the overall memory and I/O address spaces using
a mapping that is configured by the host system through standard
PCI-defined registers on each bridge and function.

Each “function” of a non-bridge device may decode up to 6 in-
dependent regions of either memory or I/O address space. These re-
gions are defined and configured by base address registers (BARs)
implemented by each function. The PCI driver queries each BAR
to determine its required size, alignment, address space (memory or
I/O), and, in the case of a memory-space BAR, whether the mem-
ory is prefetchable or non-prefetchable. Although it goes against
strict PCI terminology, in the rest of this paper we will use “de-
vice” to denote a PCI function, i.e. a single logical device with up
to 6 BARs.

Bridges also decode addresses to route requests between their
parent and secondary buses. Unlike other devices, however, bridges
use three pairs of base and limit registers instead of BARs, one
each for prefetchable memory, non-prefetchable memory, and I/O
space. Each bridge therefore decodes 3 independent, contiguous
regions of IO or memory address space. The addresses used by
every device below a bridge (including bridges on secondary buses)
must lie within these three regions.
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Figure 2. Alternative PCI configurations (only memory space re-
sources are shown)

In summary, a host CPU accesses a PCI device by issuing a
transaction on the system interconnect with a physical address that
lies in a region decoded by the root bridge of the corresponding
PCI tree. This is routed down the tree by bridges; at each level,
each bridge on a bus compares the address issued by the CPU to
the ranges defined by its base and limit registers. If it matches, the
bridge forwards the request to its secondary bus. Each device on a
bus compares the address to the regions defined by its BARs, and
if the address matches, consumes it and generates a reply.

The PCI programming problem is to configure the base and
limit registers of every bridge, and the BARs of every device func-
tion, to allow all the hardware registers for every device to be acces-
sible from a CPU. As Figure 2 shows, this can be achieved in many
different ways, leading to different usage of the available physical
address space and different device locations in that space.

We can now specify the requirements for any PCI programming
solution, starting with the basic properties of a solution in the
“ideal” case, and progressively refining the list by adding real-
world complications.

2.2 Basic PCI configuration requirements
Every bridge in a correctly-configured PCI tree decodes a subrange
of the addresses visible on its parent bus. In order for all devices
behind a bridge to be reachable, PCI requires that:

1. The bridge window, defined by its base and limit registers, must
include all address regions decoded by all devices and bridges
on the secondary bus.

In order that a request is forwarded by at most one bridge, sibling
bridges sharing a bus must decode disjoint address ranges. Since a
bus may contain both bridges and devices, all bridges and devices
on a given bus must decode disjoint address ranges within the range
of the parent bridge. This applies in all of the address spaces:

2. Bridges and devices at the same tree level (siblings) must not
overlap in either memory or I/O address space.

3. The prefetchable and non-prefetchable memory regions de-
coded by a bridge or device must not overlap.

Regions of addresses in PCI must also be aligned. For a BAR,
the base address must be “naturally” aligned at a multiple of the
region’s size. Similarly, a bridge’s base and limit registers also have
limited granularity, giving us the following alignment constraints:

4. BAR base addresses must be naturally aligned according to the
BAR size.

5. Bridge base and limit register values for both memory regions
must be aligned to 1MB boundaries.

6. Bridge base and limit register values for the I/O region must be
aligned to 4kB boundaries.

These requirements constrain the possible locations of device
BARs and child bridge base and limit registers within the region
decoded by the parent bridge, potentially leading to gaps in address
space for padding, as in Figures 2(a) and 2(b).

As described so far, configuring a PCI tree is a non-trivial prob-
lem, but can still be efficiently programmed by, for example, exe-
cuting a post-order traversal of the PCI tree, sorting devices and
bridges by descending alignment granularity, and allocating the
lowest suitable address range in the appropriate address space at
each step. Unfortunately, a number of real-world characteristics of
modern computers, like for example the requirement to align ad-
dresses naturally, make this simple approach unworkable. There-
fore, the simple post-order traversal results in a solution like that in
Figure 2(a) where big padding holes need to be inserted between
devices.

2.3 Non-PCI devices
The first problem is that certain non-PCI devices (e.g. IOAPICs and
other platform devices) appear at fixed physical memory addresses,
inside the region allocated to a PCI root complex. The locations of
these devices may be discovered through platform-specific mecha-
nisms such as ACPI [12], and no PCI device may decode such an
address region.

7. Devices must not decode reserved regions of physical address
space given by, for example, ACPI, or used by other known
non-PCI devices such as IOAPICs.

2.4 Fixed-location PCI devices
Some PCI devices may be initialized and enabled by platform
firmware at early boot time, for example USB controllers, network
interfaces, or other boot devices. Naïvely reprogramming the BARs
of such devices may lead to machine check exceptions or crashes
since the device may be active, and performing DMA operations.
Most operating systems avoid reprogramming the BARs of such
devices, which means that their existing address assignment must
be preserved. This further constrains the address ranges usable by
parent bridges.

8. Certain PCI devices determined at boot cannot change location,
and must retain addresses assigned to them by the BIOS.

2.5 Quirks
Hardware has bugs, and both devices and bridges can report in-
correct information, fail to support valid resource assignments, or
behave incorrectly when specific register values are programmed.
These problems are known as PCI “quirks” and affect a wide range
of shipping devices – the Linux 2.6.34 kernel lists 546 quirks –
leading to a collection of workarounds in commodity operating sys-
tems. Common quirks include:

• devices that provide incorrect information about their identity
as bridges or non-bridges;
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• devices which decode more address range than advertised, or
which decode address regions not assigned to them;
• standard devices which are hidden by platform firmware, but

could otherwise be normally used;
• undefined device behavior (data loss on the bus, reduced band-

width, system hangs, etc.) when particular values are written to
configuration registers.

In the latter case, the PCI configuration process must ensure the
problematic register values are never written, which imposes addi-
tional constraints on valid address assignments. Thus:

9. Configurations that would cause problematic values to be writ-
ten to registers on specific devices must be avoided.

10. Incorrect information from PCI discovery must be corrected
before calculating address assignment.

2.6 Device hotplug
Hotplugging, the addition or removal of PCI devices at runtime,
raises another challenge. When a device is plugged in, the OS is
notified by an interrupt from the root bridge, and must allocate re-
sources to the BARs of the newly-installed device before it can be
used. However, this may require reconfiguring and/or moving the
address allocation of bridges and other devices in order to make
enough address space available for the device, since it was not
present at system boot. Changing the resource allocation of exist-
ing devices requires the driver to temporarily disable the device
potentially save its current state first. After the new resources are
programmed to the BARs, the driver needs to restart the device us-
ing the newly allocated resources. Depending on the device, it may
need to bring the device to the saved state. This is a disruptive pro-
cess and may not be supported by all devices, so the reallocation of
resources which occurs on hotplug typically attempts to move the
fewest possible existing devices and bridges.

11. Configuration should minimize the disruption caused by future
hotplug events as much as possible.

12. Hotplug events should cause the minimal feasible reconfigura-
tion of existing devices and bridges.

13. Hotplug-triggered reconfiguration may not move devices whose
drivers do not support relocation of address ranges.

2.7 Discussion
It should by now be clear that PCI configuration is a somewhat
messy problem characterized by a large (and growing) number of
hardware-specific constraints which nonetheless have effects which
propagate up and down the PCI tree. Consequently, most “clean”
solutions written imperatively in a language like C sooner or later
fall foul of an exception which can greatly complicate the code,
compromise its correctness, reduce the efficiency with which it can
manage physical address spaces, and in some cases prevent it from
supporting the full PCI feature set.

Most current operating systems, including Linux [25, 29] and
FreeBSD [5] on x86-based platforms, rely on platform firmware
(BIOS or EFI) to allocate resources to most devices before the
OS starts, and then run one or more post-allocation routines [4] to
correct any problems in the allocation, allocate resources to devices
left unconfigured by the firmware, and handle known quirks as
devices are discovered and started.

This approach cannot guarantee success (though it often works):
if a bridge is programmed with an address region that is too small to
allocate all the devices behind it, there may be no way to grow the
size of the bridge’s address region without moving other bridges,
and thus some devices behind the bridge will be rendered unusable

despite sufficient address space being available overall. This prob-
lem is exacerbated by device hotplug, as it is impossible to predict
at start-up the required size of all devices.

Even so, this simplistic allocation strategy leads to substan-
tial code complexity: the complete PCI drivers of x86 Linux and
FreeBSD account for approximately 10k and 6.5k lines of C code
respectively, and device-specific quirks account for an additional
3k lines of code in Linux.

On other hardware platforms (such as Alpha/AXP), the
firmware does not implement PCI configuration, and Linux instead
performs a complete allocation using a greedy approach: devices
are sorted by their requested size in ascending order, and resources
allocated for each device in that order [25]. This can also lead to
unusable devices behind a bridge, due to a suboptimal ordering of
devices causing a shortage of address space. Note also that very lit-
tle code is shared between this implementation and that for the PC
platform: bug fixes or feature enhancements for one architecture
may not be easily applied to another.

Until recently, Microsoft Windows used a similar strategy to
x86 Linux and FreeBSD for PCI configuration, running a fix-up
procedure to correct deficiencies in the firmware allocation. As with
Linux and FreeBSD, this was unable to resize or change the ad-
dress regions decoded by bridges, leading to potentially unusable
devices [21]. Windows Vista and Server 2008 introduced a new re-
balancing algorithm [20], allowing a bridge’s resources to be mod-
ified according to the needs of its secondary bus, and increasing the
likelihood that all PCI devices could be configured. However, this
requires additional driver support for re-balancing, and the itera-
tive approach can lead to highly complex multi-level re-balancing.
Multi-level re-balancing might potentially need a long time, be-
cause increasing a bridge’s window size may require to move the
bridge to a new big enough free region. This may require more
space from the parent bridge because of address alignment require-
ments, which again may be a problem. In the worst case, multi-level
re-balancing may lead to a complete permutation of the PCI tree.

3. PCI resource allocation
The previous section detailed the PCI configuration problem and
current approaches to solving it. In this section, we describe our
implementation of PCI configuration in Barrelfish, and in the fol-
lowing Section 4, a solution to the closely-related problem of inter-
rupt allocation, before evaluating both in Section 5.

Barrelfish [7,8] is a research operating system developed at ETH
Zurich and Microsoft Research to address the related problems
of scaling and system diversity in future heterogeneous multicore
computers. As such, it provides a convenient testbed for our ideas.

PCI resource configuration can be viewed as a constraint sat-
isfaction problem: for a given system, the variables are the base
address allocated to each device BAR, and the base and limit of
each bridge for each memory region it decodes, and a correct solu-
tion may be expressed as an assignment of integer values to these
variables satisfying a series of constraints: alignment, sizes, and
non-overlap of regions.

The difficulty in PCI resource allocation arises from satisfying
these complex constraints. Such complexity is difficult to manage
in a low-level systems language like C, but fortunately its runtime
performance is not critical to the functioning of the system as a
whole. This allows us the freedom to reformulate it in a declarative
language, where the challenge becomes closer to defining what
result we require, than how the result is to be produced.

We implemented the PCI resource configuration algorithm as a
constraint logic program. This program operates on a high-level
data structure representing the PCI tree, consisting of numeric
variables and constraints between them that determine the possible
solutions. Rather than worrying about how to allocate concrete
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addresses to bridges and devices, we instead concern ourselves with
specifying the correct set of constraints to guide the CLP solver. We
begin by describing the separation between C and CLP code, before
explaining the constraint logic in detail.

3.1 Approach
We explicitly separate the PCI configuration algorithm, expressed
in CLP and running in a user-space service, from the register access
and device programming mechanisms, implemented in the usual
C code as part of the PCI subsystem of the OS. This has sev-
eral advantages. First, it decouples the details of the configuration
algorithm from the device access code, allowing us to exchange
and evolve the algorithm independently of the device access mech-
anisms. Second, the algorithm is expressed only in terms of the
generic PCI bus – all architecture-specifics are confined to the de-
vice access code.

The CLP solver we use is the Barrelfish system knowledge
base [26], a port of the open-source ECLiPSe CLP system. The
SKB is a service which is started early in the Barrelfish boot
sequence and runs initially from a RAM disk image, enabling it to
function without any device support. It is passive and event-driven,
responding to requests from the PCI driver.

At start-up, the PCI driver performs device discovery. The loca-
tion of root bridges is determined by platform-specific mechanisms
such as ACPI [12]. The driver then walks the entire bus hierarchy,
determining the complete set of bridges, devices and BARs that are
present, and assigning bus numbers to un-numbered bridges. As
part of this pass, the PCI driver inserts Prolog facts in the SKB.
Those facts describe the set of present bridges, devices and BARs,
according to the following schema:

rootbridge(addr(Bus, Dev, Fun), childbus(MinBus, MaxBus),
mem(Base, Limit)).

bridge(pcie | pci, addr(Bus, Dev, Fun), VendorID, DevID,
Class, SubClass, ProgIf, secondary(BusNr)).

device(pcie | pci, addr(Bus, Dev, Fun), VendorID, DevID,
Class, SubClass, ProgIf, IntPin).

bar(addr(Bus, Dev, Fun), BARNr, Base, Size, mem | io,
prefetchable | non-prefetchable, 64 | 32).

These facts encode all information needed to run the PCI config-
uration algorithm. A root bridge is identified by its PCI configu-
ration address (bus, device and function number), the range (min-
imum and maximum) of bus numbers of its children, and its as-
signed physical memory region. Bridges and devices are identified
by their address, and carry standard identifiers for their vendor, de-
vice ID, device class and subclass, and programming interface. A
bridge also includes the bus number of its secondary bus, and a
device the interrupt pin which it will raise (which is used by the
interrupt allocation routines described in Section 4). Finally, for a
BAR we store its base address (which may have been previously
assigned by firmware), required size, region type, and whether it is
a 64-bit or 32-bit BAR.

After creating the facts, the PCI driver causes the SKB to run
the configuration algorithm to compute a valid allocation. The
initialization algorithm we use is described in the following section.
Its output is a list of addresses for every device BAR and every
bridge, which can be directly programmed into the corresponding
registers by the driver. For example:

buselement(device, addr(6,0,0), 0, C0000000, D0000000,
10000000, mem, prefetchable, pcie, 64),

buselement(bridge, addr(0,15,0), secondary(6), B0100000,
D0000000, 1FF00000, mem, prefetchable, pcie, 0)

In this example, the 64-bit PCIe device at bus 6, device 0, function
0 requests a physical address range of 256MB in prefetchable
memory space for BAR 0. The base allocated to the device is

0xC0000000 and the limit will thus be 0xD0000000. The bridge
at which the device is attached has a base of 0xB0100000 and a
limit of 0xD0000000 in the prefetchable memory space, clearly
including this device (along with others, not shown here).

The PCI driver takes the addresses and BAR numbers as well
as bridge base and limit values from the output, and programs
the specified registers. While reprogramming devices and bridges,
they are disabled to prevent transient address conflicts. Once repro-
gramming is complete, the bus is completely configured and device
drivers can be started.

3.2 Formulation in CLP
We now turn to the configuration algorithm in constraint logic. Its
first step is to convert the facts generated by the PCI driver to a suit-
able data structure, and declare the necessary constraint variables.
The data structure used is a tree mirroring the hardware topology,
whose inner nodes correspond to bridges, and leaf nodes to de-
vice BARs or other unpopulated bridges. The constraints are then
naturally expressible through recursive tree traversal. The variables
of the CLP program are the base address, limit and size of every
bridge and device BAR, and the relationship between them may be
expressed by the constraint Limit $= Base + Size, which we later
apply.

At a high-level, our algorithm performs the following steps for
each PCI root bridge:

1. Convert bridge and device facts for the given root bridge to
a list of buselement terms, while declaring constraint variables
for the base address, limit and size of each element.

2. Construct a tree of buselement terms, mirroring the PCI tree.

3. Recursively walk the tree, constraining the base, limit and size
variables according to the PCI configuration rules and quirks.

4. Convert the tree back to a list of elements.

5. Invoke the ECLiPSe constraint solver to compute a solution for
all base, limit and size variables satisfying the constraints.

The core logic of the algorithm resides in step 3 above, and we
implement this by a direct translation of the rules described in Sec-
tion 2.2 to constraint logic, as described in the following sections.

Bridge windows
Rule 1 states that all bridge windows must include all address
regions decoded by devices and bridges attached to the secondary
bus. This means that the bridge’s memory and IO base addresses
must be smaller or equal to the smallest base of any bridge or device
on the secondary bus, and the corresponding limits must be greater
than or equal to the highest address used by any device or bridge
on the secondary bus.

Although we do not yet have concrete values for the relevant
base and limit variables, CLP allows us to constrain them using a
recursive walk of the tree, implemented as shown below.
Note that a tree is expressed as t(Root,Children), where Root
is the root node, and Children is a (possibly empty) list of child
trees – ECLiPSe uses conventional Prolog syntax whereby identi-
fiers starting with an uppercase character (e.g. Node) denote free
variables, and all others denote constants. Also note the ECLiPSe

operations ic_global:sumlist, ic:minlist and ic:maxlist which
operate on lists of constraint variables that may not have a concrete
value assigned, allowing complex constraints to be introduced be-
tween them.
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setrange(Tree,SubTreeSize,SubTreeMin,SubTreeMax) :-
% match Tree into current node and list of children
t(Node,Children) = Tree,
% match node to get its base, limit and size variables
buselement(_,_,_,Base,Limit,Size,_,_,_,_) = Node,

% recursively collect lists of sizes, minimum and
% maximum addresses for children of this node
( foreach(El,Children),
foreach(Sz,SizeList),
foreach(Mi,MinList),
foreach(Ma,MaxList)
do
setrange(El,Sz,Mi,Ma)

),

% compute sum of children’s sizes as SizeSum
ic_global:sumlist(SizeList,SizeSum),
% constrain the size of this node >= SizeSum
Size $>= SizeSum,

% if there are any children...
( not Children=[] ->
% determine min base and max limit of children
ic:minlist(MinList,Min),
ic:maxlist(MaxList,Max),
% constrain this node’s base and limit accordingly
Min $>= Base,
Max $=< Limit
; true
),

% constrain this node’s limit
Limit $= Base + Size,

% output values
SubTreeSize $= Size,
SubTreeMin $= Base,
SubTreeMax $= Limit.

setrange([],0,_,_). % base case of recursion

Non-overlap of bridges and devices
Rule 2 states that siblings must not overlap at any level of the tree.
In other words, all regions allocated to bridges and devices at the
same level must be disjunctive. The following goal ensures this,
by making use of the disjunctive constraint, which ensures that
regions specified as lists of base addresses and sizes do not overlap:
% convenience functions / accessors
root(t(R,_),R).
base(buselement(_,_,_,Base,_,_,_,_,_,_),Base).
size(buselement(_,_,_,_,_,Size,_,_,_,_),Size).

nonoverlap(Tree) :-
% collect direct children of this node in ChildList
t(_ ,Children) = Tree,
maplist(root,Children,ChildList),

% if there are children...
( not ChildList=[] ->
% determine base and size of each child
maplist(base,ChildList,Bases),
maplist(size,ChildList,Sizes),

% constrain the regions they define not to overlap
disjunctive(Bases,Sizes)
; true
),

% recurse on all children
( foreach(El, Children) do nonoverlap(El) ).

Non-overlap of prefetchable/non-prefetchable memory
Rule 3 requires that prefetchable and non-prefetchable regions
do not overlap. The two regions do not need to be contiguous.
Therefore we implemented this by inserting an artificial level in
the top of the tree containing two separate bridges, one with all
prefetchable memory ranges and another with all non-prefetchable
memory ranges of the tree. This gives some freedom to the solver,
because the order of the two regions is not explicitly specified
by our allocation code, and allows the previously-described logic
to operate independently of memory prefetchability. Treating the
two regions as completely separate trees causes the prefetchable
and non-prefetchable window of every bridge to be at completely
different locations, which is fine.

Alignment constraints
Rules 4, 5 and 6 require a specific alignment for devices and
bridges. In the following, we constrain the alignment of each el-
ement, using natural alignment for device BARs, and a fixed align-
ment for bridge windows (e.g. 1MB in the case of memory regions).

naturally_aligned(Tree, BridgeAlignment, LMem, HMem) :-
t(Node,Children) = Tree,

% determine required alignment for bridge or device BAR
( buselement(device,_,_,Base,_,Size,_,_,_,_) = Node ->
Alignment is Size; % natural alignment
buselement(bridge,_,_,Base,_,_,_,_,_,_) = Node ->
Alignment is BridgeAlignment % from argument

),

% constrain Base mod Alignment = 0
suspend(mod(Base, Alignment, 0), 0, Base->inst),

% recurse on children
( foreach(El, Children),
param(BridgeAlignment), param(LMem), param(HMem)
do naturally_aligned(El, BridgeAlignment, LMem, HMem)
).

Reserved regions
Rule 7 requires that reserved memory regions are not allocated
to PCI devices. In other words, memory regions allocated to PCI
devices should always be disjunctive with any reserved region. The
following goal ensures this requirement, by recursively processing
a list of bus elements against a list of reserved memory ranges,
specified as range(Base,Size) terms:

% recursive stopping case
not_overlap_mem_ranges([], _).

% bridges may overlap: no special treatment
not_overlap_mem_ranges(
[buselement(bridge,_,_,_,_,_,_,_,_,_)|T], MemRanges) :-
not_overlap_mem_ranges(T, MemRanges).

% device BARs match this pattern
not_overlap_mem_ranges([H|T], MemRanges) :-
% for each reserved memory range...
( foreach(range(RBase,RSize),MemRanges), param(H)
do
% match base and size variable from bus element
buselement(device,_,_,Base,_,Size,_,_,_,_) = H,
% constrain this BAR not to overlap with it
disjunctive([Base,RBase], [Size,RSize])

),
% recurse on list tail
not_overlap_mem_ranges(T, MemRanges).
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Fixed-location devices
We must also avoid moving various initialized boot devices, as in
rule 8. The following goal shows one such example: given a device
class (specified by its class, subclass and programming interface
identifiers) that should not be moved, it constrains the possible
choice of the base address to the one value which is its initial
allocation.

keep_orig_addr([], _, _, _).
keep_orig_addr([H|T], Class, SubClass, ProgIf) :-
( % if this is a device BAR...
buselement(device,Addr,BAR,Base,_,_,_,_,_,_) = H,
% and its device is in the required class...
device(_,Addr,_,_,Class, SubClass, ProgIf,_),
% lookup the original base address of the BAR
bar(Addr,BAR,OrigBase,_,_,_,_) ->
% constrain the Base to equal its original value
Base $= OrigBase
; true
),
% recurse on remaining devices
keep_orig_addr(T, Class, SubClass, ProgIf).

3.3 Quirks
Declarative logic programming provides an elegant solution to the
problem of quirks. Quirks require us to correct wrong information
as well as apply possible extra constraints to workaround misbehav-
ing devices. In CLP we can easily define a database of facts for de-
vices needing special treatment. Those facts are implicitly matched
against the data structure before the configuration algorithm runs,
causing incorrect information to be corrected, and additional con-
straints on the allocation to be defined, without changing any of the
core logic of the algorithm.

3.4 Device hotplug
In principle, the allocation of resources for hotplugged devices can
be handled simply by adding facts for the new device and its BARs,
and then re-running the allocation algorithm. However, this may
cause all existing address assignments to change (excluding those
whose location is fixed, as in Section 3.2), and is thus undesir-
able due to the performance impact of interrupting running device
drivers.

Adding artificial devices to the PCI tree before computing the
first allocation helps to produce gaps which can later be used for
hotplugged devices. Figure 3 shows that the CLP solution can deal
with an almost completely filled region. This means, that the avail-
able space can almost be filled completely with artificial devices to
provide space for later hotplugs. With CLP this is particularly easy,
because the artificial devices get placed around the real ones. Later,
when a device gets hotplugged, the algorithm should try to move
the least possible number of BARs of other devices. CLP allows
to define an objective function for the constraint solver, minimiz-
ing the number of BARs which have to be reallocated. Moreover,
the CLP solution is better placed to handle complex reconfiguration
that may be required by device hotplug, as it specifies the complete
set of feasible configurations which will be explored by the solver.
Section 5.4 presents the results of a benchmark showing the theo-
retical limits of the CLP approach in handling device hotplug, in
comparison to a traditional postorder traversal.

4. Interrupt allocation
We now move from PCI bus configuration to the closely-related
problem of interrupt allocation, which we have also implemented
in CLP, and which is also evaluated in Section 5.

4.1 Problem overview
Interrupts are another important resource that must to be allocated
to devices by the OS. Most PCI devices can raise one or more
interrupts. To avoid shared interrupt handlers, the OS should try to
allocate unique interrupt vectors to every device. Modern systems,
and some modern devices, support message signaled interrupts
(MSIs). These map interrupts into the physical address space, and
therefore the only requirement is choosing a different interrupt
address for every device. However many systems and many PCI
devices do not yet support MSIs, and thus correctly and efficiently
configuring PCI interrupt allocation remains a critical OS task.

Each PCI device signals interrupts by asserting one of up to
four available interrupt lines (INTA, INTB, INTC and INTD, rep-
resented in our solution as the integers 0–3). On PC-based plat-
forms, these signals are routed via PCI bridges and configurable
link devices to global system interrupt numbers (GSIs). This rout-
ing is encoded in and configured via platform firmware, using a set
of ACPI tables [12].

Starting from a given device and interrupt pin, the mapping is
determined as follows:

1. Consult the ACPI interrupt routing tables for the current bus,
device and pin number. If there is a mapping for the given pin:

(a) If the entry names a GSI, the interrupt line is fixed.

(b) Otherwise, the entry names a link device, and the interrupt
is selectable from set of GSIs.

2. Otherwise, compute the new interrupt pin on the parent bus,
using the formula (device number + pin) mod 4, and repeat.

The goal of the interrupt allocation code is to assign unique in-
terrupt vectors to every device. Interrupt sharing is to be avoided
wherever possible [14]. It can severely impact performance, since
the drivers for devices sharing an interrupt must essentially poll
their devices to determine if the interrupt is for them. Furthermore,
many device drivers do not handle shared interrupts correctly at all.
As well as avoiding sharing among PCI devices, specific GSIs are
also assigned to legacy (non-PCI) devices and other system devices,
which should also be avoided by the allocation code.

We can summarize the requirements for interrupt configuration
as follows:

1. assign and configure a GSI (possible translated by bridges and
link devices) for every enabled PCI device,

2. ensure that all allocated GSIs are unique.

3. avoid reassigning legacy pre-allocated GSIs.

This problem is not as hard as the PCI address allocation prob-
lem and could be implemented in C. However there are still some
benefits from using CLP. First, storing and querying information
about possible GSIs and prototyping the algorithm in CLP is con-
venient. Second, ensuring that allocated GSIs are globally unique
can easily be done using the built-in goal alldifferent (see 4.2).
We therefore implemented interrupt allocation in the SKB.

4.2 Solution in CLP
At start-up, the PCI/ACPI driver code populates the system knowl-
edge base with a fact for every PCI interrupt routing table entry,
mapping a device address and interrupt pin to a source, using the
schema:

prt(addr(Bus, Dev, _), Pin, pir(Pir) | gsi(Gsi)).

These facts include addresses of PCI devices without function
number, because the same mapping applies for all functions on a
multi-function device. The interrupt source is either a name (ACPI
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object path) identifying the interrupt link device or a direct GSI
number, indicating that this interrupt’s allocation is fixed.

For each link device, pir facts are added describing the possible
GSIs that may be selected for a given device:

pir(Pir, GSI).

In this relation, Pir defines the link device name, and GSI one of
the selectable GSIs for this device (so each link device has multiple
facts, one for each configuration).

The CLP code operates on these facts, and the PCI device facts
described in the previous section. At the top-level, it determines the
interrupt pin used by a specific device, and passes it to assignirq
to allocate a unique GSI:

assigndeviceirq(Addr) :-
device(_, Addr, _, _, _, _, _, Pin),
% require a valid Pin
Pin >= 0 and Pin < 4,
( % check for an exising allocation
assignedGsi(Addr, Pin, Gsi),
usedGsi(Gsi, Pir)
; % otherwise assign a new GSI
assignirq(Pin, Addr, Pir, Gsi),
assert(assignedGsi(Addr, Pin, Gsi))
),
printf("%s %d\n", [Pir, Gsi]).

assignirq takes the PCI address and interrupt pin for the device as
inputs, and chooses a possible GSI for the device. It uses findgsi
(described below) to determine the available GSIs for the device,
and the alldifferent goal to avoid overlaps:

assignirq(Pin, Addr, Pir, Gsi) :-
% determine usable GSIs for this device
findgsi(Pin, Addr, Gsi, Pir),
( % flag value for a fixed GSI (i.e. meaningless Pir)
Pir = fixedGsi
;
% don’t change a previously-configured link device
setPir(Pir, _) -> setPir(Pir, Gsi)
;
true
),
% find all GSIs currently in use
findall(X, usedGsi(X,_), AllGsis),
% constrain GSIs not to overlap
ic:alldifferent([Gsi|AllGsis]),
% allocate one of the possible GSIs
indomain(Gsi),
% store settings for future reference
( Pir = fixedGsi ; assert(setPir(Pir,Gsi)) ),
assert(usedGsi(Gsi,Pir)).

Finally, the following CLP function matches the device’s address
and interrupt pin with the prt and pir facts to find the possible
GSIs (multiple solutions may be found). If no match is found, it
recursively performs bridge swizzling until a routing table entry
matches (which is always true at the root bridge).

Devices BARs Bridges Runtime (ms)

sys1 7 11 12 2.0
sys2 13 20 6 14.7
sys3 13 20 6 14.4
sys4 14 22 6 36.4
sys5 12 18 5 10.0
sys6 7 9 6 19.0
sys7 9 14 6 22.2
sys8 15 25 4 6.7
sys9 15 25 4 31.2

Table 1. System complexity and execution times for the
PCI configuration algorithm

findgsi(Pin, Addr, Gsi, Pir) :-
( % lookup routing table to see if we have an entry
prt(Addr, Pin, PrtEntry)
;
% if not, compute standard swizzle through bridge
Addr = addr(Bus, Device, _),
NewPin is (Device + Pin) mod 4,

% recurse, looking up mapping for the bridge itself
bridge(_, BridgeAddr, _, _, _, _, _, secondary(Bus)),
findgsi(NewPin, BridgeAddr, Gsi, Pir)
),
( % is this a fixed GSI, or a link device?
PrtEntry = gsi(Gsi),
Pir = fixedGsi
;
PrtEntry = pir(Pir),
pir(Pir, Gsi)
).

5. Evaluation
Picking suitable metrics to evaluate a PCI programming solution
is something of challenge. We focus here on code complexity,
execution time, and efficiency of resultant solutions, but some of
the evaluation necessarily remains subjective in its comparison with
current approaches.

5.1 Test platforms
We evaluated the PCI configuration and interrupt allocation algo-
rithms on nine different x86 PC and server systems, with a mixture
of built-in and expansion devices including network, storage and
graphics cards installed. We refer to these as sys1 through sys9, and
show the number of PCI elements they include in Table 1. All sys-
tems have two PCI root bridges with the exception of sys1, which
has one. Here we show the totals for the whole system, as our algo-
rithm allocates resources to all PCI trees in a single invocation.

All of these systems support USB keyboards in the BIOS, and
thus the system initializes the USB controller in firmware at boot
time. Consequently, our solutions implement this fixed device re-
quirement using the keep_orig_addr constraint from Section 3.2
to prevent the USB controllers from being reprogrammed, and also
avoid any memory regions marked as reserved by ACPI or in use by
IOAPIC devices. The computation does not include handling other
quirks, since our hardware does not exhibit them and consequently
does not exercise that part of our CLP code. Our implementation is
successful in configuring all PCI buses and devices on all the test
systems.

126



C LOC CLP LOC

Register access 235
Data structure 817 31
Algorithm 224
ACPI 360
Interrupts 660 28
Miscellaneous 109

Total 2181 283

Table 2. Lines of code in PCI configura-
tion and interrupt allocation

5.2 Performance
We measured the time for PCI configuration on our test systems,
and show the results in Table 1. This time is for the CLP algorithm
and does not include the initial bus walk, nor programming of
device registers. As discussed in Section 3, these remain in C as part
of the PCI driver, and the CLP time dominates the overall runtime.

Compared to the performance of a hard-coded allocation in C,
which in existing OSes typically requires less than a millisecond,
our solution is substantially slower, but the additional overhead of
10–30ms is only incurred at boot time or after a hotplug event, and
so is arguably insignificant to the end user. This computation can
be run in parallel with other tasks, and since the PCI configuration
changes rarely, the computed configuration can be cached and
reapplied during the next boot process. In those cases, no additional
overhead is added to the boot time.

5.3 Code size
In this section we compare the complexity, measured in lines of
code (LOC), of our CLP-based approach to the comparable por-
tions of the Linux x86 PCI driver. Such a comparison can never
be precise, and must be preceded by several qualifications. First, in
both cases we consider the code related to PCI resource configura-
tion, interrupt allocation, PCI device discovery, maintenance of the
data structures representing the PCI bus hierarchy, and the corre-
sponding hardware access mechanisms. Second, we exclude some
PCI-related mechanisms (such as the legacy PCI BIOS interface)
that are currently unsupported by our solution. Third, because we
do not handle quirks yet, we exclude the hardware quirk-handling
code, but retain handling of other special cases. Finally, the Linux
code implements the solution that attempts to fix up the initial BIOS
configuration, whereas our code does a full allocation of addresses.
Note that our goal is to reduce the complexity of the source code
and therefore the number of source lines of code, rather than the
number of generated machine statements.

We summarize the results for our solution in Table 2 and for
Linux in Table 3. The relevant Linux code is located in the ker-
nel in drivers/pci. Overall, our approach uses 2464 lines of code,
compared to 3976 for the pure C-based Linux version.

Breaking this down, we use much less code for register access,
as our access to hardware is highly regular and independent of al-
location. Building and manipulating data structures is also simpler
for us: representing lists and trees is highly concise in Prolog, and
allows us to build much simpler structures in the C domain, result-
ing in about half the code size. We use more code for ACPI, since
we explicitly handle ACPI reserved regions, whereas Linux relies
on the BIOS initialization for this. Code for interrupt assignment is
about the same size. Finally, the “core” of the configuration code
(in as much as it can be isolated in the Linux case) is 224 lines of
Prolog versus 706 lines of C.

C LOC

Register access 897
Data structure 1686
Resource management 706
ACPI 121
Interrupts 521
Miscellaneous 45

Total 3976

Table 3. Lines of code for equiva-
lent functionality in Linux

The largest class of code in both implementations is used for
maintaining data structures. This is because PCI data must be
queried from either ACPI or directly from the hardware, trans-
formed to a meaningful internal representation, and added to a
structure. Finally, configuration proceeds by traversing this struc-
ture, accessing and mutating it. The corresponding data structure in
our implementation consists mostly of Prolog facts which are gen-
erated by C but traversed/accessed entirely in CLP, and thus require
fewer lines of code than Linux. Despite being large in size in both
systems, such code is not the most complex in its logic.

The more complex logic in the PCI configuration algorithm
uses 224 lines of CLP code in our implementation. This not only
produces a correct and complete allocation, it also handles special
constraints such as avoiding reserved regions as well as not moving
certain devices. In comparison, the Linux C implementation uses
more lines of code for less functionality (it does not perform full
bus configuration).

Besides the usual benefits arising from a smaller, simpler, code-
base in terms of source lines of code, the separation of concerns be-
tween low-level hardware-specific device access code and a high-
level declarative resource configuration algorithm enhances the
system’s maintainability and adaptability to changing hardware re-
quirements. Complex device- and system-specific constraints, such
as quirks, can be incorporated without changing the device access
code or core algorithm, and it can easily be ported to other PCI-
based platforms. We return to this discussion in Section 6.

5.4 Postorder traversal comparison
To evaluate the quality of the solutions found, we investigated how
they compare to the style of simple postorder traversal used in
current operating systems. When allocating resources to a device
tree where the size of each device is known in advance, one might
expect this approach to be sufficient. We first describe why that
is not the case, and then show experimentally the advantage of a
declarative CLP solution against such a traversal.

Starting with the base address given by the root bridge, such
an algorithm traverses down the left-most branch of the tree first,
assigning the current base address to each bridge and finally the
left-most leaf device, while satisfying alignment constraints. For
each device allocation, the device size is added to the base value,
plus any padding required for alignment. The algorithm next tra-
verses all child devices of the bridge, before moving up the tree to
the next-upper parent bridge, and updating the bridge’s limit reg-
ister in the process, before continuing with the remaining devices
and bridges.

Such an algorithm can be simply described and implemented,
and ensures that all bridges are allocated a window including their
children and that alignment constraints are satisfied. However, the
algorithm is insufficient for PCI configuration for two reasons:
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Figure 3. Address space utilization of CLP algorithm vs. simple
postorder traversal as devices and bridges are added to a simulated
system. The CLP algorithm reorders devices as needed, exactly fol-
lowing the DeviceSum line, which shows the lower bound. The pos-
torder traversal, which sorts the devices according to size, cannot
fit the PCI tree into the given root bridge window. Vertical lines in-
dicate when a new bridge is added; the horizontal line indicates the
maximum size of the root bridge window.

1. It fails to include constraints that require keeping devices at
a fixed address. This requires all parent bridges to decode the
fixed device window. Because all parent bridges have to decode
a fixed address, all children of every bridge decoding a fixed
address have to be placed close to a predetermined address
region. This cannot be easily expressed in a postorder traversal
of the device tree.

2. Satisfying alignment constraints leads to potentially large
amounts of address space wasted in padding, preventing suc-
cessful configuration when not all devices fit into the root
bridge’s address range.

To learn how or CLP-based algorithm behaves when resources are
consumed more and more by additional devices, we stressed the
configuration algorithm in an offline experiment by adding pro-
gressively more devices and bridges to a simulated PCI system.
Starting with zero devices and bridges, we added either a device
or a bridge on every round and measured the consumed resources
by the configuration derived by the algorithm. This scenario is not
purely artificial, because it simulates what can happen when de-
vices are hotplugged. We compared our CLP-based algorithm with
an improved postorder traversal algorithm, which sorts devices ac-
cording to their requested size in ascending order. The results are
shown in Figure 3.

The horizontal line Root size (max) indicates the given root
bridge window size, which must not be exceeded for a success-
ful configuration. The vertical lines in the figure indicate where a
bridge has been added to the PCI tree. The DeviceSum line indi-
cates the sum of the requested size of all installed devices without
padding or alignment constraints; this is the absolute lower bound
of address space utilization. The data points indicate the address
space consumption after having added the next device.

The figure shows that our CLP-based allocation algorithm ex-
actly follows the device sum. Its constraints give it the freedom to
reorder bridges and devices, so that no address space is wasted for
alignment constraints and a solution can always be found. The best
postorder traversal algorithm, which does not respect fixed device
requirements, cannot fit the devices into the given root bridge win-

dow beyond 80% utilization, indicating that such a simple approach
cannot work in general.

6. Discussion
We set out to evaluate declarative languages as a way of express-
ing hardware configuration algorithms, as part of a wider project to
build a new operating system for heterogeneous multicore systems.
Our hypothesis was that such an approach would reduce the com-
plexity of the code we would have to write, and in the long term
would provide a good foundation for reasoning about the complex-
ity and heterogeneity of modern and future hardware.

Our experience so far has been mostly positive, but not without
challenges. In this section we describe both the advantages and
disadvantages of the approach that we have encountered.

6.1 Advantages
Clear policy/mechanism separation: Maintaining a sharp dis-
tinction between the algorithm used to find a suitable hardware con-
figurations and the mechanism to configure the hardware by writing
values to registers has a number of strong benefits.

First, the algorithm can be clearly understood in isolation from
hardware access, making it easier to both debug and maintain.
Indeed, much of the debugging, testing, and evaluation of our PCI
programming code was carried out “offline” in a vanilla ECLiPSe

running on Linux using PCI configurations obtained from a variety
of machines around our lab, before being put into service at boot
time in Barrelfish. It is also useful to be able to test this code by
writing correctness conditions in Prolog which are then validated
automatically.

Second, the hardware access code is simplified, since it is no
longer threaded through the configuration algorithm. Verifying (by
inspection) that the C code correctly accesses PCI devices and
bridges becomes a simpler task, and the chances of breaking this
code when changing the configuration algorithm itself are greatly
reduced.

Separation of special cases: PCI quirks, fixed PCI devices, re-
served non-PCI address ranges, and the like can be handled en-
tirely in the declarative domain through Prolog statements, and do
not pollute the C register access code.

Furthermore, adding new quirks or special cases can be done
simply by adding such cases as assertions to the declarative specifi-
cation of the algorithm, without modifying the mainline algorithm
code in any way. For the most part, additional constraints are one-
line references to existing functions, and hence easy to add to the
system. It is often sufficient merely to add a device’s ID to a list,
which is passed to a function applying a specific constraint to the
elements. All of this results in a clear separation within the declar-
ative code between special cases and the solution description.

Flexibility of data structures: Device information in traditional
operating systems is typically represented by a set of simple, ad-
hoc data structures (tables, trees, hash tables) whose design is
determined largely (and rightly so) by performance concerns in the
kernel. In our approach we retain such structures where needed on
the fast path, but represent most of the hardware information as
facts in the logic language.

This greatly facilitates reasoning about the information in ways
not foreseen at design time. For example, information from ACPI
about non-PCI device locations can be transformed easily into re-
gions of memory reserved from the normal PCI allocation process.
The logical unification mechanism provided in languages like Pro-
log makes this expressible in a single rule. Furthermore, this repre-
sentation can be changed over time without concern for disturbing
critical kernel code.
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Late-binding of algorithm: ECLiPSe allows for adding new
functionality as well as replacing functionality at runtime. This fea-
ture provides considerable flexibility. In the concrete case of PCI
programming, we can run the normal allocation algorithm for a
complete allocation and later at runtime load an allocation algo-
rithm which is more suited to hotplug scenarios. Whether the algo-
rithm is replaced at runtime or boot time, the mechanism code to
access the hardware need not change.

Platform independence: As we have mentioned, PCI code in
Linux varies almost completely between, for example, the x86 and
Alpha/AXP platforms. In contrast, with our approach the config-
uration logic is identical across all architectures using PCI. What
changes is the register access code in C – for example, most non-
x86 architectures replace I/O instructions with memory-mapped
I/O. This makes our code highly portable. Furthermore, only short
mechanism code has to be ported, reducing the chance of introduc-
ing bugs when porting.

Reuse of functionality: While CLP may be regarded as a some-
what heavyweight approach (see below), the functionality provided
is close to that required by many other parts of a functional OS –
in some ways, the system knowledge base might be regarded as
analogous to parts of the Windows Registry, albeit with a much
more powerful type system, data model, and query language. Bar-
relfish uses this functionality for, among other things, representing
the memory hierarchy to performance-conscious parallel applica-
tions, and as a name server for other system services. Along with
the authors of Infokernel [3], we argue for making a rich repre-
sentation of system information available for online reasoning, and
CLP provides a powerful tool for achieving this.

6.2 Disadvantages
Unsurprisingly, the approach also has some significant drawbacks.

Constraint satisfaction is no silver bullet: A hardware configu-
ration problem like PCI, with all its special cases, is very natural
to express as a constraint satisfaction problem. However, this does
not automatically lead to a solution in a reasonable time. Constraint
solvers have a well-known tendency to explode in complexity (and,
consequently, time of execution) without careful specification of
the problem, and our use of CLP is no exception in this regard.

Part of this is due to ECLiPSe being a relatively simple solver
by modern standards, but much of the complexity is inherent. In
practice, the onus is on the programmer to guide the solver by
careful annotation of the problem. This makes the source code more
complex than a simple specification of the constraints - our Prolog
code is carefully written to avoid an explosion in complexity and/or
runtime.

For example, in our PCI case we sort the variables to be instan-
tiated according to the requesting size of the device in an ascending
order. The solver starts probing the last element of the list of vari-
ables. This causes it to try to place the device with the biggest size
requirement first, which is generally more difficult. If small devices
would be placed first, the solver would most likely later need to
reallocate them, to free up a large continuous address range in or-
der to place a bigger device. This would potentially lead to a whole
permutation of the tree.

To take another example, the natural-alignment property is best
expressed by a modulo division of the base address by the size, as
shown in Section 3.2. If the remainder is zero, the address is aligned
according to the size. However using this implementation, when the
solver tries to instantiate the base address variable, it searches all
integers one by one until it finds a value with a zero remainder.
In case some other constraints cannot be met, the solver must try
another solution and repeat searching for values with a remainder
of zero, leading to a huge execution time. We therefore modified

the associated goal slightly, by letting the solver choose an integer
from a (typically small) precomputed range which is multiplied by
the device’s size to determine the base address. The upper bound
of the range is chosen so that the maximum base lies just beyond
the fixed window of the root bridge, therefore including all possible
naturally-aligned base addresses for the device, while substantially
reducing the search space.

Increased resource usage: Even with the heuristics described
above, ECLiPSe CLP is an interpreted, high-level language with
high execution time overhead compared to C. Additionally, a CLP
algorithm works by propagating constraints and then probing val-
ues rather than assigning values in a straight-forward iterative way.
Clearly this leads to longer execution times.

For some classes of problem, such as the PCI programming case
we discuss in this paper, the execution time overhead is not criti-
cal as long as it remains under a second or so. Additionally, the
PCI configuration changes rarely and the previous solution can be
cached and reapplied without the need of starting the CLP system.
In general, boot time is only increased when the PCI configura-
tion changed since the algorithm ran last time. However, the per-
formance penalty clearly rules out a class of other, time-critical
hardware-related tasks.

For this work we used a relatively slow language runtime. Using
a faster language might significantly improve execution time.

For resource constrained devices such as small battery powered
sensor nodes or embedded systems this solution might be inap-
propriate. However those systems usually have a simple and fixed
PCI configuration without hotplug support. They can either be pro-
grammed in C or by running the solver once, offline, on a standard
PC with PCI data from the embedded system. The solution found
can then be added to the device’s boot image and applied at every
boot-up of the system.

Large code base: While we use considerably less PCI-specific
code (C and Prolog) to implement our solution, we do employ a
large body of code in the form of the CLP solver. The port of
ECLiPSe we use in Barrelfish consists of 16242 lines of C1, plus
a handful of assembly-language lines. In addition, the core CLP
libraries add 1042 lines of Prolog, many of them quite long. The
complete solver executable (statically linked) consists of 1.5MB for
a 64-bit x86 OS. Additionally, a compressed RAM disk of 600kB
provides the necessary Prolog files. This is clearly significant, and
adding this amount of code to the boot image of an OS raises at
least two concerns.

First, there is the issue of code bloat. On modern hardware, the
boot process is unduly impacted by the overhead, but the difference
in start-up performance is noticeable compared with the (consider-
ably less functional) hard-coded PCI solution we used in the early
stages of OS development. On the other hand, as mentioned above,
the CLP solver does provide a valuable data management service
to other parts of the OS as a general name server and policy engine,
and so the cost in code size should be amortized over the whole set
of client subsystems which use it.

Second, there is the extent to which we can trust the CLP
solver itself. We rely on ECLiPSe behaving correctly. Since it is
a mature, general-purpose system, we might expect it to be reliable
and relatively bug-free. However, it is unlikely that a complex
piece of code like ECLiPSe will be formally verified, which makes
our approach less attractive for high-assurance operating systems.
However, such systems typically are written to specific hardware
platforms, obviating the need for complex configuration logic.

For high-assurance, formally verified systems, a better applica-
tion of this approach would be to apply the ideas at compile time,

1 LOC counts were generated using “SLOCCount” by David A. Wheeler.

129



which would integrate with the seL4 approach [17] of modeling
the entire OS in a high-level language, which is then translated (in
a way that preserves the verified properties) to C.

Boot sequence: Configuring hardware at OS boot time in a high-
level language like CLP means that the language runtime has to
be started early in the boot process. Barrelfish may be unique in
loading a full CLP system before configuring PCI hardware.

Perhaps surprisingly, this imposes very few requirements on the
OS. The SKB, like most of the components, executes in user space
as in a classical microkernel design. However, CLP requires very
little of the OS to be functional beyond basic (non-paged) virtual
memory and a simple file system, initially from a RAM disk passed
as a GRUB multiboot module at boot. The dynamic nature of the
solution allows us to load further functionality after an initial PCI
configuration when disks, networking interfaces, etc. come online.

Learning curve: Most OS programmers use C rather than Prolog
to implement algorithms, and the learning curve for a language like
Prolog is almost certainly steeper than for C. However, we feel
someone with a basic knowledge of Prolog will find it easier to
understand our code than a complex, imperative C version.

Furthermore, we are by no means the first people to try using
logic programming in operating systems – for example, Prolog has
been successfully used to provide network configuration logic in
Windows [13].

7. Related work
This paper has considered a new approach to hardware program-
ming, focusing on the specific problem of PCI resource configu-
ration. The PCI specification [9, 23] describes the mechanisms and
requirements for correct configuration of a PCI system, but does not
specify any particular algorithm to be used in this process, leading
to a variety of different (usually incomplete) solutions in current
systems, as described in Section 2.7. These solutions are being it-
eratively refined and improved to handle more complex scenarios
such as device hotplug [20, 29], leading to greater complexity.

A resource allocation algorithm for a hierarchical tree structure
such as PCI has been patented by Dunham [10]. This algorithm
sorts devices with fixed requirements according to their base ad-
dress in ascending order, and all other devices according to their
alignment requirements (size) in descending order. It then allocates
resources to devices and bridges using a first-fit strategy starting at
the lowest-level secondary bus, allowing it to determine the size re-
quirement for the lowest-level bridge. Once its size is set, a bridge
is then treated as a fixed-size device for allocation at the upper lev-
els, and placed using the same first-fit allocation. Bridges are con-
sidered to have fixed address requirements if a device at any level
below the bridge has a fixed requirement. As it encodes a specific
traversal of the resource tree, this algorithm is roughly compara-
ble to the postorder traversal discussed in Section 5.4 and used in
varying forms by several current systems.

Rather than encode device configuration logic in low-level sys-
tems languages, we argue for wider use of declarative programming
techniques. In this work, we specifically use constraint logic pro-
gramming [15], a technique derived from logic programming and
used to allocate resources in many fields. Prior applications of CLP
include room allocation, task and job scheduling [2,24], and indeed
in our implementation we reused ECLiPSe primitives originally in-
tended for task scheduling. Prolog has also been used in commer-
cial systems such as Windows NT [13] to derive network configura-
tions: a backtrack-based binding algorithm takes facts about inter-
faces of network modules and derives valid configurations, includ-
ing the correct load order of modules, which it then stores to the
registry. DEC developed a series of expert systems to ensure that se-
lected component configurations that include CPUs and other hard-

ware as well as software are valid and components are compatible
to each other [6]. Hippodrome uses a solver to automatically con-
figure minimal and still performant storage systems by analyzing
workloads and iteratively searching a global minimum [1]. Declar-
ative specifications of resources and resource requirements have
also been used successfully by systems such as Condor [18, 28].
In the context of the Semantic Web, the resource description for-
mat (RDF) [30] is widely used to represent and reason online about
resources. RDF is expressively almost equivalent to the logic pro-
gramming approach we present here (ignoring the constraint and
optimization extensions we employ), and might form the basis for
a viable alternative to ECLiPSe.

Declarative language techniques have also been applied to op-
erating systems, to date largely in the area of resource allocation.
The Infokernel [3] was an early advocate in the OS arena of mak-
ing a rich representation of system information available for online
reasoning. Singularity [27] uses XML manifests to reason about the
resources used by a device driver. These manifests may be analyzed
at driver install time to checking for resource conflicts. They also
ensure the correctness of a driver’s interaction with the OS through
contracts on message channels. The related system Helios [22] also
uses manifests, to define preferred affinities of message channels to
other processes, and thus guide the placement of processes to CPUs
in a heterogeneous system. Similarly, the Hydra framework [31]
uses a declarative approach to reason about available resources in a
heterogeneous system consisting of host CPUs and programmable
offload devices. Using an XML-based description language, the
Hydra runtime selects suitable offload processors, thus achieving
greater utilization of processor resources while reducing complex-
ity for the programmer.

The complexity of hardware access can also be reduced through
declarative approaches. Devil [19], an IDL for hardware program-
ming, uses a declarative specification of device ports (base ad-
dresses), registers and their interpretation to generate low-level
code for device access. This leads to simpler and more understand-
able code for device drivers, in an attempt to improve driver reli-
ability. ATARE [16] uses a series of regular expressions to extract
IRQ routing information from ACPI, without the need for the usual
complex byte code interpreter.

Finally, SQCK [11] uses declarative queries to concisely imple-
ment a complete file-system consistency checker, which is also able
to handle complex repairs. Together with the previous work, this
signals what we see as a promising trend towards applying high-
level declarative techniques to simplifying the construction of tra-
ditionally complex and error-prone systems software.

8. Conclusion and future work
In this paper we have investigated the case for applying declara-
tive language techniques to low-level configuration of hardware in
modern machines. In our initial experiments, we have shown that
we can implement a solution to the complex PCI resource alloca-
tion problem using CLP with few lines of code, written in a natural
and easy-to-evolve manner.

In addition, the approach provides considerable benefit from a
clean division between policy and mechanism, and the further sep-
aration of general solution specification from the numerous spe-
cial cases which inevitably occur when dealing with real software.
However, care still must be taken when formulating the problem
in CLP to avoid unacceptable explosions in execution time when
searching for a solution.

The principle disadvantage of our approach is that it is heavy-
weight, in terms of memory footprint, execution time, and (when
also considering the CLP runtime) total lines of code. Much of this
is an artifact of our particular choice of a powerful, general pur-
pose, but also mature (and therefore slower than the current state
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of the art) constraint logic programming system. While this choice
has allowed us great freedom to explore the design space, a more
appropriate solution for a product would compile the search algo-
rithm into an efficient form when the OS was built, resulting in
much faster execution and a smaller memory footprint.

Our view is therefore that the approach shows promise, and our
experience in building an OS and delegating much hardware con-
figuration functionality to the CLP engine has been positive so far.
In our view, industry trends such as heterogeneous multicore, in-
telligent peripheral devices, sophisticated and reconfigurable inter-
connects, and partial cache coherence, combined with increasingly
diverse platform configurations, strongly motivate a new and more
systematic approach to reasoning about hardware configuration.

In our ongoing work, we are applying declarative techniques to
other aspects of Barrelfish – in particular, more complete represen-
tations of the memory hierarchy than are available in typical OS
NUMA support – and also applying logic programming techniques
to naming and addressing the various processing elements in het-
erogeneous multicore systems.
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