
Sharing is leaking: blocking transient-execution
attacks with core-gapped confidential VMs

Charly Castes
EPFL & Google

Lausanne, Switzerland

Andrew Baumann
Google

Zurich, Switzerland

Abstract
Confidential VMs on platforms such as Intel TDX, AMD
SEV and Arm CCA promise greater security for cloud users
against even a hypervisor-level attacker, but this promise has
been shattered by repeated transient-execution vulnerabili-
ties and CPU bugs. At the root of this problem lies the need
to multiplex CPU cores with all their complex microarchi-
tectural state among distrusting entities, with an untrusted
hypervisor in control of the multiplexing.

We propose core-gapped confidential VMs, a set of software-
only modifications that ensure that no distrusting code
shares a core, thus removing all same-core side-channels
and transient-execution vulnerabilities from the guest’s TCB.
We present an Arm-based prototype along with a perfor-
mance evaluation showing that, not only does core-gapping
offer performance competitive with non-confidential VMs,
the greater locality achieved by avoiding shared cores can
even improve performance for CPU-intensive workloads.

ACM Reference Format:
Charly Castes and Andrew Baumann. 2024. Sharing is leaking:
blocking transient-execution attacks with core-gapped confidential
VMs. In 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 4 (ASP-
LOS ’24), April 27-May 1, 2024, La Jolla, CA, USA. ACM, New York,
NY, USA, 15 pages. https://doi.org/10.1145/3622781.3674190

1 Introduction
Since Spectre [37] and Meltdown [40] in 2018, CPU security
isolation has been repeatedly broken by a series of transient-
execution vulnerabilities [3, 10, 16, 22, 26–29, 36, 42, 44, 48,
53–55, 57, 61, 62, 65, 67, 69–72, 75, 76, 78] and CPU bugs
that break isolation [14, 32, 51, 52, 66, 79] and the flood of
vulnerabilities shows no sign of stopping (see fig. 3 in §2.2).
For the worst problems, mitigations have been developed in
the form of microcode fixes and software patches, but these
often induce substantial performance overheads. Because

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0391-1/24/04.
https://doi.org/10.1145/3622781.3674190

these vulnerabilities stem from microarchitectural designs
that seek to maximise single-threaded performance through
aggressive speculation and out-of-order execution [59], we
have no reason to doubt that they will continue.
The same period has seen increasing adoption by cloud

providers and customers of confidential VMs (CVMs) on plat-
forms like AMD SEV-SNP, Intel TDX, and Arm CCA. These
architectures encrypt guest memory and enable the removal
of the hypervisor and host stack from a cloud guest’s trusted
computing base (TCB). In principle, the guest TCB is reduced
solely to the CPU hardware and remotely-attested platform
firmware. However, in practice, transient-execution vulner-
abilities and CPU bugs are a significant threat to confiden-
tiality; somewhat ironically, the features offered to increase
security of guest VMs place them at the greatest risk from
this new class of attacks. Because the untrusted hypervisor
controls resource allocation and scheduling of CVMs, any
leaks that do exist can be effectively amplified and exploited.
For example, a malicious hypervisor may interrupt guest
execution at inopportune moments to attempt to leak mi-
croarchitectural state, or it may co-schedule attacker and
victim vCPUs on different hardware threads of a shared core.

Rather than the status quo of waiting for the development
of ad-hoc mitigations to new transient-execution vulnerabil-
ities as they arise, we seek a principled and robust fix. In this
regard, the most promising approach is to isolate distinct
security domains on distinct cores, a technique we refer to
as core gapping. Core gapping avoids the vast majority of
shared microarchitectural state and (as we’ll discuss shortly
in §2.2) mitigates all but one of the processor vulnerabilities
known to have broken cloud VM security isolation. For a
typical VM isolation scenario, core gapping requires sched-
uling vCPUs of guest VMs on distinct physical cores, thus
preventing leaks to other VMs through either time-slicing
context switches or sibling hardware threads. This is nec-
essary but unfortunately not sufficient for VM isolation; to
prevent leaks across the trust boundary with privileged code
(i.e., hypervisor and host), we must ensure that they too
execute on distinct physical cores [25]. However, the naive
implementation of this approach for CVMs runs into an im-
mediate and fundamental limitation: because the hypervisor
is untrusted, the guest cannot rely on it to implement core
isolation.
Our goal is to address this limitation, enabling core gap-

ping of confidential VMs without a trusted hypervisor and

1

https://doi.org/10.1145/3622781.3674190
https://doi.org/10.1145/3622781.3674190

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Charly Castes and Andrew Baumann

Table 1. Confidential VM terms in different ISAs.

Arm CCA Intel TDX CoVE [58]

Confidential VM realm VM TD VM TVM
Security monitor RMM TDX module TSM
Privileged mode realm SEAM confidential

without further hardware changes. We leverage the conver-
gence of hardware support for confidential VMs to a model
where firmware that is attested and trusted by both host and
guest executes on all transitions to/from the execution of con-
fidential vCPUs. We modify this firmware to constrain the
physical CPUs on which a confidential vCPU is dispatched
and limit the causes and frequency of interrupts. Our modi-
fied firmware also delegates all VM exit events to a remote
core; we thus prevent the possibility of leaks across the trust
boundary, by avoiding the context switch between a confi-
dential VM and untrusted hypervisor.

In this paper, we present our design for core-gapped con-
fidential VMs (§3) on platforms such as Arm CCA, Intel
TDX, and RISC-V CoVE [58]. We implement a prototype
for Arm CCA (§4) by modifying Arm’s trusted firmware,
showing that it is practical on a simulator implementing
the forthcoming architecture extensions for CVMs, and eval-
uate its performance on a current Arm platform (without
hardware CVM support). Our prototype uses novel tech-
niques to temporarily dedicate host cores to confidential
VM execution (§4.2), support fast cross-core RPCs without
relying on constant busy-waiting (§4.3), and minimise VM
exits by delegating interrupt management to dedicated cores
(§4.4). A performance evaluation (§5) shows that thanks to
these optimisations, core-gapped CVMs offer performance
competitive with shared-core VMs. Finally, we discuss in §6
how the same approach could be applied to competing CVM
platforms such as Intel TDX.

2 Background
In this section we cover background and further motivation
for our work. We present the common principles underlying
emerging ISA extensions for confidential VMs, then discuss
the impact and limitations of transient-execution attacks
and how recent proposals address such vulnerabilities before
concluding with our threat model.

2.1 Confidential VMs
Confidential VMs have gained traction in recent years to
the point where all major architectures now include ISA
extensions to support them [1, 4, 30]. CVMs offer the ability
to “lift and shift” existing workloads to an untrusted cloud
environment while providing the capabilities and guarantees
typical of more restricted trusted execution environments
such as remote attestation, confidentiality, and integrity. In

Hypervisor

Host VM

Host OS

VMM

CVM 1

Guest OS

App App

Other VM

CVM security monitor

CVM 2

Shared cores
Trusted by guest

Trusted by host
Trusted by all

Trap

Figure 1. Generic architecture support for confidential
VMs [4, 30, 58]. A trusted security monitor protects CVMs,
which may run on any core. Cores context switch between
trusted and untrusted domains in response to VM entry/exit.

CVM 1

Guest OS

App App

Hypervisor

Host VM

Host OS

VMM

Other VMCVM 2

CVM security monitor RPC

Dedicated cores Shared cores

Figure 2. Core-gapped confidential VMs (compare to fig. 1).
Physical cores are bound to specific CVMs; VM exits are
handled by cross-core RPCs rather than context switching.

particular, CVMs promise to remove the hypervisor (and
hence the platform provider) from the guest’s TCB.

The design of CVM ISA extensions has mostly converged
toward a model in which isolation is enforced through coop-
eration between hardware and software components, with
significant functionality being placed in platform firmware
that is attested and trusted by both host and guests. Indeed,
Arm CCA/RME [4, 39] (specified as part of Armv9), Intel
TDX [30] (commercially available since 2022), and CoVE [58]
(a leading RISC-V extension proposal) all follow a very simi-
lar design, depicted in fig. 1. Those extensions introduce a
new privileged CPU mode which grants access to the physi-
cal memory backing confidential VMs, and in which a CVM
security monitor runs. Physical memory ranges can be config-
ured as confidential (and thus inaccessible to host software)
using hardware mechanisms under the control of trusted
firmware within the confidential mode. The CVM security
monitor enforces isolation between CVMs using second-level
page tables, similar to how a traditional hypervisor provides
isolation between VMs. Table 1maps each extension’s unique
terminology into our unified CVM model.

2

Sharing is leaking: blocking transient-execution attacks with core-gapped confidential VMs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

Besides managing physical memory and CVM second-
level page tables, the CVM security monitor also plays the
role of the arbiter between CVMs and the host hypervisor. In
particular, the security monitor interposes on all transitions
between the CVMs and the host to save and restore contexts,
validate host-provided configuration, and selectively share
the register state of guest VMs. For all situations where it
would access guest context, modify guest page translations,
or simply initiate guest execution, the hypervisor is required
to invoke the security monitor. A call to the security monitor
always implies a transition to confidential mode, and a tran-
sition back to normal mode requires explicit intervention of
the security monitor to save/restore context. This prevents
the host from observing guest register state on interrupts or
exceptions, although it retains overall control of the CPU.
During transitions to/from the host, the security moni-

tor may attempt to mitigate transient-execution attacks by
flushing microarchitectural state; for example, Intel’s TDX
module flushes branch history on return to the host [34].
However, such flushing carries an inevitable cost, and re-
quires that the relevant microarchitectural structures be ex-
posed to software control; as we will discuss shortly in §2.2 it
is often applied only retroactively. Moreover, flushing cannot
protect against architectural leaks due to bugs in processor
implementations [14, 51, 52, 79].

As a notable exception to the architecture depicted in fig. 1,
AMD’s confidential VM extension, SEV-SNP [1], relies more
heavily on the CPU ISA to directly enforce isolation. Rather
than a new privileged mode, SEV-SNP places responsibility
for protecting guest register context on the implementation
of the VMRUN instruction used to launch confidential VMs.
Furthermore, the page tables for SEV-SNP VMs remain di-
rectly accessible to the host, with a shadow reverse-map
structure (“RMP”) consulted by the processor on each page
walk to ensure integrity of a confidential VM’s address space.
A secure coprocessor manages the lifecycle of confidential
VMs, supports attestation, and controls the contents of the
RMP table, but is not directly involved in the ongoing execu-
tion of CVMs. We will discuss the challenges of implement-
ing core-gapped CVMs on AMD SEV-SNP later, in §6.2, but
for now we will not consider it further in our design.

2.2 Transient-execution vulnerabilities
While we must defer to prior work for a more thorough treat-
ment of past vulnerabilities [15, 25, 77], we present in fig. 3
a timeline of disclosed vulnerabilities (including transient-
execution vulnerabilities and architectural bugs) that have
broken processor security isolation on mainstream CPUs
(Intel, AMD, and Arm) since 2018. Not all vulnerabilities
affected all CPUs and isolation mechanisms; for example,
some only affected Intel SGX enclaves [14, 45], while others
targeted features specific to Apple’s Arm CPUs [17, 55, 60].
What is generally true, however, is that each such vulner-
ability represents a defeat of the same forms of hardware

security mechanism that are now being relied upon to iso-
late CVMs. For example, the ÆPIC leak [14] (a bug in Intel’s
local APIC that exposed the processor’s internal state) was
demonstrated by extracting secrets from an SGX enclave,
but the same vulnerability arising today would be just as
likely to leak from a TDX VM.
Across all these vulnerabilities, only one demonstrated a

cross-core leak severe enough to warrant a security advisory
from the processor vendor and mitigation by cloud providers.
That bug was 2020’s CrossTalk [53], which exploited a spec-
ulative leak in a microarchitectural staging buffer used in the
implementation of instructions such as CPUID and RDRAND
and, crucially, that was shared by multiple cores. By contrast,
the recent GhostRace [54] attack relies on multiple cores
to steer transient execution, but assumes a setting with a
shared kernel between attacker and victim cores; it would
be mitigated by core gapping.

Notwithstanding the impact of CrossTalk, that the vast ma-
jority of vulnerabilities (30+) were not exploitable across core
boundaries (even though many were exploitable by a sibling
hardware thread) is significant, yet unsurprising. The nature
of CPU microarchitecture design dictates that performance-
critical structures be kept as close as possible to the execution
units of a core and thus be duplicated (rather than shared)
across cores; first-level (and often second-level) caches, TLBs,
register files, reorder buffers, store buffers, and more are all
per-core resources. Fewer shared resources leads to fewer
opportunities for leaks and exploits; moreover, for the re-
maining shared resources located further from the core (and
thus, with higher request latencies) such as last-level caches,
memory controllers, and on-chip I/O devices, it becomes
practical to implement explicit partitioning and resource
management to close the remaining side channels [41].

To be clear, cross-core exploitation of transient-execution
vulnerabilities remains conceptually possible as long as an in-
terface to trigger the vulnerability and a side channel through
which to observe the results of transient execution exist.
Such side channels may include contention in the on-chip
interconnect [18] or memory controller, or coherence states
of memory shared between attacker and victim cores [78].
NetSpectre [62] even demonstrated a remote attack that re-
lies solely on the timing of network traffic, although in its
current form the leakage rate is extremely low (fewer than
10 bits per hour in a cloud setting).

To date, the known vulnerabilities have been mitigated
(albeit after sometimes lengthy pre-disclosure delays [44]) by
a combination of microcode patches, software workarounds,
and new hardware. Besides the cost and engineering com-
plexity of developing such mitigations, they can also have a
significant performance and functionality impact. Past mit-
igations have imposed dramatic overheads [13], disabled
features such as transactional memory [35], and rendered
hyperthreading quasi-unusable [47] on systems that host

3

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Charly Castes and Andrew Baumann

2018 2019 2020 2021 2022 2023 2024

Me
ltdo

wn
[40

]

Spe
ctre

v2
[37

]

Spe
ctre

v1
[37

]

Spe
ctre

v4
[42

]

Laz
yFP

[65
]

Net
Spe

ctre
[62

]

For
esh

ado
w [69

]

Fal
lou

t [1
6]

RID
L/Z

om
bie

Loa
d [6

1, 7
1]

SW
AP

GS
[28

]

Plu
nde

rvo
lt [4

5]

iTL
B M

ulti
hit

[66
]

Zom
bie

Loa
d v

2 /
RID

L-T
AA

[61
, 71

]

RID
L-V

RS
[71

]

Cac
heO

ut /
RID

L-L
1DE

S [7
2]

LVI
[70

]

Sno
op-

ass
iste

d L
1D

sam
plin

g [2
9]

Stra
igh

t-lin
e sp

ecu
lati

on
[3]

Cro
ssT

alk
[53

]

Dea
d µ

ops
[57

]

Spe
ctre

BH
B [1

0]

PAC
MA

N [55
]

MM
IO

stal
e d

ata
[32

]

RET
BLE

ED
[76

]

ÆP
IC leak

[14
]

Spe
ctra

l [7
8]

DIV
0, s

trcm
p o

ver
run

[48
]

Zen
ble

ed
[52

]

Inc
ept

ion
[67

]

Spe
c. a

t Fa
ult

[27
]

Dow
nfa

ll [4
4]

Cac
heW

arp
[79

]

Rep
tar

[51
]

SLA
M [26

]

Gh
ost

Rac
e [5

4]

Nat
ive

BH
I [7

5]

Tik
Tag

[22
, 36

]

Figure 3. Transient-execution vulnerabilities and CPU bugs that break security isolation. Only NetSpectre [62] and
CrossTalk [53] demonstrated cross-core leaks in typical cloud VM settings.

SGX enclaves [33, 69]. We believe that the status quo of ad-
hoc mitigations for each discovered attack is neither secure
nor sustainable, and seek a more comprehensive solution.

2.3 Core gapping as the basis of isolation
We are not the first to observe that cores offer a natural
boundary on which to build stronger security isolation:
two recent systems leverage the same observation in dif-
ferent contexts (we will cover other related work later, in §7).
The first, Core Slicing [80] also uses isolated cores to avoid
transient-execution vulnerabilities and side channels, but
replaces guest VMs with statically-partitioned bare-metal
tenants and hence requires hardware support. The second,
Quarantine [25], runs VMs on distinct physical cores from
their hypervisor as we do, but does not consider the unique
challenge of confidential VMs. Quarantine is designed to
protect the host from malicious guests, but not to protect
guests from a malicious host. Applying Quarantine’s design
to CVMs cannot give guests any better security guarantees
than the status quo, as it relies on the hypervisor to imple-
ment core isolation. We seek to work within the constraints
of existing hardware designs for confidential VMs, while
guaranteeing meaningful (attested) isolation to CVM guests.

Like the above systems, our use of core gapping changes
the way cores are allocated and CPU time is accounted.
Because host CPUs are statically bound to guest vCPUs,
it becomes impractical to overcommit host CPUs by time-
slicing vCPU execution. Furthermore, virtualization tasks
performed by the host (VM exit handling, I/O emulation, etc.)
must run on a distinct CPU from the guest vCPUs. Naively,
this would seem to require more host resources, or come at
an inherently large cost in performance, since fewer vCPUs
can run on the same host. In reality, however, the impact
is not so significant. In the specific case of infrastructure-
as-a-service cloud VMs, Zhou et al. [80] already noted that
(a) host CPUs are not generally overcommitted, and (b) I/O
is becoming fully virtualised through SR-IOV devices, with

minimal time spent in the host handling VM exits. Indeed,
while private clouds heavily rely on overcommitment, public
clouds are converging to a “slice of hardware” model for IaaS
VMs that offers guaranteed non-overcommitted resources
for predictable performance. We anticipate that the same
will also be true of confidential VMs in the cloud: they will
have guaranteed CPU resources andwill evolve towards fully
hardware-virtualised I/O [2, 31], so we target such a setting
in our design, but unlike Core Slicing we do not require it. In
particular, we measure the overhead of software-emulated
I/O in our evaluation.

More generally, as per-socket core counts steadily increase,
the relative cost of dedicating cores to specific purposes de-
creases. Rather, the dominant performance bottleneck be-
comes off-chip bandwidth (the “memorywall”); in this regard
we can expect remote exit handling to improve performance,
because by running the host on a separate core we avoid
evicting the guest’s working set from per-core caches and
the TLB [64]. Nevertheless, in our experiments, we will fol-
low the lead of Hertogh et al. [25] and fairly account for
the resource overhead of core gapping by using the same
number of physical cores in all comparisons.

2.4 Threat model
We adopt the confidential computing threat model, which
seeks to guarantee the integrity and confidentiality of guest
CVMs from a malicious host, but we strengthen its handling
of CPU vulnerabilities and side channels.
We consider distinct TCBs from the perspective of the

host (such as the cloud provider), and guests (who run in
confidential VMs). Host and guests distrust each other, but
both must trust the CPU hardware, trusted firmware includ-
ing the CVM security monitor, and the systems that remotely
attest them; software and hardware vulnerabilities in those
components are generally out of scope, with an important
exception: hardware side channels and transient-execution
vulnerabilities that leak state (breaking confidentiality) or

4

Sharing is leaking: blocking transient-execution attacks with core-gapped confidential VMs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

affect execution (breaking integrity) only within a single core
are in scope and are mitigated by core gapping. For exam-
ple, side channels in the last-level cache are out of scope
(although we recommend the use of hardware cache parti-
tioning mechanisms as an effective mitigation), but attacks
exploiting the L1 cache, TLBs, store buffers, reorder buffers,
etc. are all defended against. Other lower-level hardware side
channels including power and electromagnetic leaks are out
of scope.

Guests trust the contents of their confidential VMs and the
attestation mechanisms (e.g., rooted in a certificate from the
platform vendor) that give them confidence in the integrity
of their CVMs and the trusted firmware. Guests can execute
arbitrary binary code within their CVMs, seeking to exploit
transient execution vulnerabilities in the host or in neighbour
VMs. We do not aim to harden isolation boundaries within
CVMs; for example, the strength of address-space isolation
within a CVM remains as in the status quo. The host controls
the hypervisor and thus resource allocation and execution
of guest CVMs; denial of service of CVMs is out of scope.

3 Design
The essential properties that core gapping seeks to maintain
are: (a) all instructions of a confidential VM’s vCPU are
executed by the same host core, and (b) from the first to the
last instruction of the vCPU, only guest-trusted code (i.e.,
the security monitor) may run on that core. (From a security
perspective, it is not strictly necessary to guarantee that
vCPUs cannot migrate within the set of trusted cores used
by a given CVM, but relaxing this condition adds complexity
for no obvious benefit.)
To achieve these properties, as illustrated by fig. 2 we

make two changes to the basic CVM software architecture:
1. The security monitor maintains and enforces a binding

of CVM vCPUs to host cores. Any attempts by the
hypervisor to dispatch a vCPU on the “wrong” core
fail, which prevents a malicious guest’s vCPU from
being dispatched on the same core as a victim VM.

2. When a running vCPU exits the VM because of an
exception or external interrupt and requires the ser-
vice of the host hypervisor (for example, to emulate
untrusted I/O devices), rather than saving context and
exiting from the privileged mode back to the host hy-
pervisor, the security monitor writes the exit cause
information to shared (non-confidential) memory per-
mitting the hypervisor to handle it on another core.

The second point is the more invasive of the two changes,
yet it is critical: if the security monitor were to permit a
switch back to the hypervisor, it would lose control of the
core, and would have no way of knowing what had executed
and what secrets may have leaked through microarchitec-
tural state. However, never returning to the hypervisor has
significant implications – it starves the kernel scheduler on

the affected cores, but it is difficult for a general-purpose host
such as KVM to ensure that no other threads are scheduled
nor any interrupts delivered to such cores. Our insight here
is that we can take these cores completely “offline” from the
point of view of the host scheduler, by using the existing
processor hotplug support, and then dedicate them to the
security monitor and its guest CVM for the life of that guest.
Then, instead of executing the guest VM via a local call to
the security monitor, the host is changed to turn all such
calls including running a guest vCPU into cross-core RPCs
that the security monitor handles on a dedicated core. In
handling some VM exits, the hypervisor may require further
action by the security monitor, for example to manipulate
page tables, and these are also implemented by changing the
existing APIs to cross-core RPCs.

Replacing local context switches between the hypervisor
and security monitor with cross-core RPCs may add latency,
but as we will show it also reduces overheads, both direct
(saving/restoring register state and flushing microarchitec-
tural structures to mitigate transient execution vulnerabil-
ities) and indirect (cache and TLB pollution, and cold mi-
croarchitectural state due to the aforementioned flushing).
Such performance tradeoffs between same-core privilege
transitions and shared-memory RPCs have been explored in
the literature [21, 50, 64, 74] and do not fundamentally differ
here; our observation is that the remote case can not only
improve performance, but also strengthen security isolation.
The final aspect of our design is a user-mode core plan-

ner component that performs admission control on CVMs,
assigns cores to run them, and orchestrates the process of
dedicating those cores to confidential mode and later return-
ing them to normal execution. This can be considered on one
hand as a complement to the cloud resource allocators that
schedule VMs to nodes [24, 73] (logically extending them to
consider resource allocation inside a node), and on the other
as an extension of existing VM schedulers that seek to main-
tain affinity of vCPUs for NUMA locality [43, 49] (making
explicit longer-term placement decisions). The primary prac-
tical change is that whereas previously vCPU threads would
be “pinned” to specific host cores only as a performance
optimisation, a static allocation of vCPUs to host cores is
now enforced from the start of a CVM. To avoid long-term
fragmentation of available cores (and thus poor locality), we
envisage permitting limited changes of the vCPU-to-core
binding at coarse (e.g. 10s of seconds) time scales; this could
be implemented in the CVM security monitor, but we defer
further investigation of it to future work.

4 Implementation
We describe a prototype implementation of core-gapped con-
fidential VMs for Arm CCA and Linux/KVM. We begin with
a brief overview of the relevant architecture mechanisms,

5

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Charly Castes and Andrew Baumann

before describing the basic implementation of core gapping,
followed by optimisations to reduce its overhead.

4.1 Arm CCA
Arm’s confidential compute architecture (CCA) follows the
design principles outlined in §2.1. A lightweight realm man-
agement monitor (RMM) [5] executes in a privileged realm
world [4] where it manages second-level page tables and
CPU context to isolate confidential VMs from each other.
The host runs in normal world and can not access realm
world memory. To interact with the RMM the host must use
a secure monitor call [7] to trusted firmware, which then
switches the CPU into realm world and forwards the call to
the RMM which handles the call and ultimately returns to
the host, again via trusted firmware.
Arm specifies a standard RMM interface [5] to enable

interoperability between host and RMM implementations.
The host remains responsible for resource management and
virtualization, but the RMM is responsible for validation and
enforcement. This interface exposes functions for creating
andmanaging confidential VMs, delegatingmemory to realm
world, requesting updates to guest page tables, and running
vCPUs (among others). In this model a guest’s VM exit is
perceived by the host as a return from an RMM call to run
the vCPU, with the return value including selected guest
registers required for exit handling.
We chose to develop our prototype on Arm because,

even though hardware that implements the necessary realm-
management extension (RME) ISA has not yet shipped, Arm
provides both a reference implementation of the trusted
software for CCA [68] and an architectural simulator [6]
on which to run it. Furthermore, as soon as RME-capable
Armv9 systems ship, we expect they will be able to run our
prototype, since it uses only standard architectural features.
By contrast, despite the earlier availability of Intel TDX hard-
ware, it is unsuitable for such research – a hardware-enforced
security policy limits the user to running only TDX module
binaries signed by Intel (see discussion in §6.1).
Our prototype is based on the reference RMM (version

0.3.0) and Linux/KVM (version 6.2) with Arm’s modifications
to support CCA. In total, we modified a further 1030 lines of
code in Linux and 860 lines (2.7% increase) in the RMM to
implement core gapping. We did not change the APIs that
the RMM exposes to either host or guests, so no changes are
required in the guest VM. Besides running our prototype
on the ISA simulator (which is not performance accurate),
we also modified it to run on current (Armv8) hardware,
to permit a performance evaluation on real servers. In this
mode, the RMM runs in normal world (not the new realm
mode) on dedicated cores using memory reserved for it at
system boot time, but without any security isolation from
the host.

4.2 Dedicating cores
The crux of core gapping is to ensure that no two security
contexts (no two CVMs, nor a CVM and any host code) are
co-located on the same physical core. This requires us to (1)
inform the host that some cores can no longer be used for
its own operations; (2) prevent control of those cores being
returned to the host before the CVM using them terminates;
and (3) ensure that the security monitor will never permit
two CVMs to be co-scheduled on the same core.
We use the Linux hotplug interface to gracefully restrict

the host OS to a dynamic subset of physical cores. When
taking a core offline for hotplug, the Linux kernel migrates
all tasks away from the core, re-configures interrupts to
target other cores in the system, and marks it as unusable
for future operations.1 The only modification required to
the existing hotplug shutdown procedure is to disable the
frequency scaling request initiated by the scaling governor
during clean-up, so the “offline” cores continue running at
normal power and frequency settings. We then introduced
a final call to the security monitor to transition the “offline”
cores into realm mode rather than halting.
Once a core is dedicated to realm world, no transitions

back to normal world should occur on that core until the
CVM it is running terminates. To ensure this, we rely on
the architecture that delivers all exceptions and interrupts
occurring in realm world to the RMM. The intended use is
that the RMM saves and wipes guest register state before
(in typical operation) switching back to the host hypervisor
to handle the exception. We instead modify the RMM so
that it never returns execution to the host, effectively taking
control of the dedicated cores.
Additionally, our modified RMM enforces a stricter core

assignment policy to prevent the host from time-slicing two
mutually distrustful CVMs on a single core. Similarly to
baseline CCA operations, the host is responsible for resource
management, including vCPU placement. Our prototype ex-
poses an additional ioctl for the VMM to act as a user-space
core-planner; we also provide a default placement policy
to support unmodified VMMs. We block the host from co-
scheduling vCPUs by marking a physical core as dedicated
from the first entry of a vCPU on that core until the corre-
sponding vCPU is destroyed. Any later attempt to dispatch
the same vCPU on another core will also return an error
to the host. Only when the CVM is terminated (either by
the host, or because it exited gracefully) and its vCPUs are
destroyed can the host schedule another CVM or reclaim
control of the dedicated cores, whereupon they are brought
back “online” through another hotplug event.

1Since none of our target Arm platforms support hardware threads, we use
the term “core” here for simplicity. However, on a threaded processor, we
would dedicate all hardware threads of the same core to confidential VMs,
and all threads of a single core would be bound to the same CVM.

6

Sharing is leaking: blocking transient-execution attacks with core-gapped confidential VMs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

 VMM vCPU
threads

1

VMM I/O
threads

Wake-up thread

7

5
2

3 4 6

 Handle
 VM exit

Host coreDedicated cores
 IPI

Shared
memory

Figure 4. Asynchronous call mechanism. A wake-up thread
(new to our design) polls RPC channels to wake runnable
vCPU threads in response to an IPI.

4.3 Remote RMM calls
Since host and guest cannot share a physical core, core gap-
ping replaces CPU mode switches with remote procedure
calls on shared memory. Practically, the synchronous local
RMM call that KVM uses to run a guest vCPU is replaced by
an RPC to the RMM on a dedicated core. This call returns
when the guest vCPU exits, whereupon KVM (typically)
performs some emulation before issuing the next run call.
Thus, although KVM is in fact the RPC client, an alternative
(logical) view of the situation is of the RMM calling KVM
to handle VM exits. To maximise the utilisation of guest-
dedicated cores and thus the performance of guest CVMs,
we must optimise for the latter view, i.e. the time between a
vCPU exit event that causes a run call to return, and issuing
the next run call that resumes VM execution. In the rest of
the paper we refer to this delay as the run-to-run latency.
Meanwhile, to maximise the scalability of the system where
a few host cores service many guest CVM cores, we must
also minimise the RPC CPU overhead on the host. Our pro-
totype gracefully integrates with KVM’s thread-per-vCPU
design by selectively leveraging asynchronous RPCs to con-
currently manage multiple vCPUs on a single host core, and
supports all the same KVM functionality as unmodified Arm
CCA VMs.
We make a distinction between vCPU run calls and all

other RMM invocations. Because they involve guest execu-
tion, run calls are unbounded operations (often taking tens of
milliseconds or longer) whereas all other RMM calls are only
for quick manipulations of CVM state, such as installing page
translations. For the latter short-lived calls, we use a simple
synchronous call mechanism with busy-waiting polling on
both host and RMM cores. Specifically, the host thread writes
the call arguments into shared memory before polling for a
response. Meanwhile, on the RMM side, all cores dedicated to
RMM execution either run their corresponding vCPU or poll

Table 2. Comparison of null RMM call latencies.

Call Latency

Core-gapped asynchronous (vCPU run calls) 2757.6 ns
Core-gapped synchronous (e.g., page table update) 257.7 ns
Same-core synchronous >12.8 µs

shared memory for incoming host calls (to minimise their
latency). There is a one-to-one mapping between host vCPU
threads (those controlled by the userspace VMM process)
and RMM dedicated cores. Thus, while a VM exit is serviced
by a vCPU thread (which is ideally rare and quick) there is
no useful work to do on the corresponding dedicated core.
For CVM run calls, the host vCPU thread does not busy-

wait for a response, but instead blocks immediately after
writing the call arguments into shared memory. Fig. 4 shows
the sequence of events that will unblock it. When a vCPU
exits (and thus when the host’s run call must return), the
RMM writes the exit reason and selected guest registers to a
shared page and sends an inter-processor interrupt (IPI) to
the host to signal an asynchronous return (1). Arm supports
16 possible IPI numbers, 7 of which are already reserved by
Linux, so we cannot convey information in the IPI itself
and allocate only one further IPI as a notification of CVM
exits. The handler for that IPI activates a wake-up thread
(2) which polls shared memory until a stopped vCPU is
found (3 – 4). The wake-up thread then unblocks the cor-
responding KVM vCPU threads (5) before continuing to
poll for other vCPU exits (6) and finally suspending itself
until the next IPI. To minimise run-to-run latency, the vCPU
threads run at high priority (Linux’s FIFO scheduler class),
so they typically run until completion whereupon they re-
sume the suspended vCPU and again block until its next
exit. Unlike Quarantine [25], we rely on IPIs rather than
continuous polling to handle VM exits, because we found
that although this increased the run-to-run latency on an
uncontended system, polling competed for CPU time with
other host threads such as those in the VMM process re-
sponsible for I/O emulation (7) resulting in worse overall
performance on emulation-intensive workloads.

Table 2 shows the round-trip latencies of synchronous and
asynchronous remote RMM calls on a current Arm server
(§5.1). This supports our decision to use asynchronous invo-
cations only for the long-running calls, with busy-waiting
for the rest, improving both throughput and run-to-run la-
tency. In both cases we change only the RPC transport, but
not the API exposed by the RMM to the host.
Without suitable hardware we cannot measure the cost

of a same-core RMM call, but as a point of comparison we
report the latency of a null call to trusted firmware (Arm
EL3) on the same system. This is only part of the end-to-
end RMM call path yet takes more than four times longer

7

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Charly Castes and Andrew Baumann

 IPI
 Request

FreeFreePen
din

g

Free

Acti
ve

-

Update

26 37 -

- 37

 Inject

40 38- -

 Inject

2 26
Pen

din
g

Free
Acti

ve
Free

Acti
ve
Pen

din
g

Ina
cti

ve

 Timer
Tick

Timer

Dedicated core - Interrupt list virtualisation

Dedicated
core

Host
core

Physical

5

Host virtualRMM virtual

2

1

2'

4'

4

3

Figure 5. Virtualization of virtual interrupt list registers.
The host observes and manipulates a virtual list containing
a subset of the guest interrupts, allowing the RMM to inject
interrupts without perturbing host operations.

than a remote call due primarily to mitigations for transient-
execution attacks. Although we hope that future hardware
will not require such mitigations, experience (§2.2) suggests
that they may accrue over time.

4.4 Interrupt management
The RMM itself executes with interrupt disabled, but inter-
cepts physical interrupts during vCPU execution that cause
vCPU exits in accordance with the RMM specification. In
addition, the baseline RMM configures the CPU registers
related to the local interrupt controller to induce traps, dele-
gating their emulation to the host. We found that interrupt
management was by far the most significant source of ex-
its to the host for compute-bound workloads, with exits
caused both by physical interrupts and the virtualization
of the guest interrupt controller. For example, each tick of
the virtual timer induces two exits, and in our experiments
over 90% of exits when running CoreMark-PRO [19] are due
to local timer interrupts. Such a high exit frequency might
be tolerable on a shared core where interrupts are handled
locally, but becomes a significant source of overhead with
core gapping due to congestion on the remote host core.
Moreover, because we dedicate cores to vCPUs, there is less
need for a fully virtual interrupt controller.
In our prototype, we address this problem by delegating

some interrupt management to the RMM. There is an intrin-
sic tension between maintaining a small TCB and offloading
more emulation to the RMM. However, we note that some
interrupt sources can be emulated very simply while signifi-
cantly reducing the total interrupt count. In particular, we
emulate both the virtual timer and inter-processor interrupts
directly in the RMM, accounting for 150 and 70 new lines
of code respectively. Note that this does not require MMIO
emulation (which remains delegated to the host), but rather
changes handling of CPU register writes that already trap
to the RMM. By doing so we also further isolate the CVM
guest from a malicious host; arguably, providing a trusted

Table 3. Virtual interprocessor interrupt latency.

IPI latency

Core-gapped CVM, without delegation 43.9 µs
Core-gapped CVM, with delegation 2.22 µs
Shared-core VM 3.85 µs

source of time to a confidential guest is of more importance
than some additional emulation logic in the TCB.

We modified the RMM’s interrupt handling logic to make
the offloading transparent to KVM. On Arm CCA, virtual in-
terrupts are controlled by a list of active and pending virtual
interrupts (ich_lr<n>_el2 registers). The RMM interface
specification expects the host to manage virtual interrupts,
therefore the run call takes an interrupt list as argument,
and returns a potentially updated list of interrupts on exit.
We make interrupt virtualization offloading transparent to
KVM by exposing a filtered list of virtual interrupts instead,
hiding some interrupts from KVM while managing the true
list in the RMM. Fig. 5 illustrates interrupt management on
our prototype. As a parameter to the vCPU run call, the host
sends a list of virtual interrupts to install on the interrupt
controller (1). The RMM then injects new pending inter-
rupts if it can find free slots in the physical list (2 & 2’), and
updates the state of virtual slots to reflect interrupt life-cycles
(3). During guest operation, the RMM can decide to inject
interrupts in response to timer ticks or IPI requests without
host interaction (4 & 4’). The KVM host can still request
exits, for instance to inject an interrupt from an emulated
I/O device, by sending an IPI as it does for shared-core VMs.
On exit to the host, the RMM synchronises the slots one last
time and forwards the virtual list to KVM (5), which can
resume operation transparently.
Table 3 reports the time to deliver and acknowledge (in

shared memory) a virtual IPI; interrupt delegation is partic-
ularly effective at reducing this cost, because it avoids VM
exits on both sender and receiver cores. In particular, inter-
rupt delegation completely skips the host’s scheduler, which
might delay virtual interrupt injections for share-core VMs.

5 Evaluation
In this section we describe a performance evaluation of our
Arm CCA-based prototype of core-gapped confidential VMs.
We demonstrate that core-gapped CVMs offer competitive
performance across a variety of workloads, and sometimes
even slightly outperform a shared-core baseline.

5.1 Experimental setup
Since Armv9 hardware supporting CCA is not yet available
and the architectural simulator is not cycle accurate, we eval-
uate our prototype on a cloud server using an AmpereOne
SoC with Armv8.6 cores at 3 GHz. To run our prototype on

8

Sharing is leaking: blocking transient-execution attacks with core-gapped confidential VMs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

this platform without interference with the host OS, we stati-
cally reserve system memory for it at boot time (much as the
CCA firmware would do), and load the RMM image into it
after boot. When dedicating a core to run a CVM, we do not
attempt to switch to realm mode but rather jump directly to
the previously-loaded RMM running in normal world (which
thus cannot enforce isolation from the host). This version
of our RMM prototype has been further modified to avoid
interaction with trusted firmware (EL3) and to handle all
RMM calls from the host OS directly, which suffices to run
CVMs without RME hardware.
Overall, we expect our evaluation platform to perform

comparably to a true CCA platform, with two notable dif-
ferences. First, CCA hardware will encrypt the memory of
confidential VMs. On other platforms (e.g., Intel TDX), mem-
ory encryption adds a 2–3% overhead to memory-intensive
workloads [23], a cost that will be the same with or without
core gapping. Second, CCA hardware performs additional
physical memory ownership (granule protection) checks in
the TLB miss handler. Although we cannot predict the cost
of such checks, because core-gapped CVMs avoid interfer-
ence from the host OS, we expect them to achieve better TLB
locality than shared-core CVMs on the same hardware.

More challenging than the core-gapped CVM is the choice
of baseline system to which its performance may be com-
pared. Without suitable hardware, we cannot run the RMM
in shared-core mode, as it would conflict with the host OS’s
control of normal world. Therefore, our experiments use a
traditional (non-confidential) shared-core VM as the base-
line. This configuration avoids not only the cost of hardware
memory encryption and EL3 calls (as in our own CVM con-
figuration), but it also avoids the overhead of world switches,
context save/restore sequences for transitions to/from realm
world, and RMM bookkeeping. Thus, our experiments will
unfortunately exaggerate any performance overheads of core
gapping, and we can expect core-gapped CVMs to offer rela-
tively better performance compared to shared-core confiden-
tial VMs when such a comparison becomes possible.

We use Linux 6.2 for the host kernel with the performance
scaling governor and kvmtool as the VMM, both modified to
support Arm CCA [8, 9]. To fairly account for the resource
requirements of core gapping, we use the same number of
physical cores in all experiments. In particular, for a work-
load with 𝑁 cores, we run an 𝑁 core VM in the baseline,
restricting the VMM threads to run on a fixed set of 𝑁 host
cores. In the core-gapped CVM configuration, we instead
run an 𝑁 − 1 core VM (on dedicated cores) for the same
workload, while pinning all VMM threads on the host to a
single additional core. Therefore, the core-gapped CVMs in
our experiments always runs with one fewer vCPU. Unless
specified othervise, we use 16 cores for all of our experi-
ments, thus 16 vCPUs for shared-core VMs and 15 vCPUs
for core-gapped CVMs.

Table 4. Interrupt delegation effect on CoreMark-PRO

Without delegation With delegation

Interrupt-related exits 33954 ± 161 390 ± 3
Total exits 37712 ± 504 1324 ± 60

8 16 24 32 40 48 56 64
Number of host cores

0

20k

40k

60k

80k

100k

120k

Co
re

M
ar

k-
PR

O
sc

or
e

Core-gapped CVM
..., busy waiting
Shared-core VM

Core-gapped CVM, no int. delegation
..., no int. delegation, busy waiting

Figure 6. CoreMark-PRO [19] scaling for shared-core (base-
line) VMs and core-gapped CVMs. Core-gapped CVMs use
𝑁 − 1 dedicated cores and 1 host core. Higher is better.

5.2 Scaling a CPU-intensive workload
We first evaluate the performance implications of core gap-
ping on a CPU-intensive workload, and quantify the impact
of our optimisations. We expect to see performance impacts
from core gapping due to costlier exits to the host, contention
on the host core for both I/O and vCPU threads, and RMM
overhead. On the other hand, core-gapped CVMsmay benefit
from greater locality, potentially boosting performance.
We start by evaluating the impact of scaling up the num-

ber of dedicated cores running CoreMark-PRO [19] (a CPU-
intensive benchmark), while keeping a single host core run-
ning all VMM threads. All guest VMs are assigned 16GiB
of RAM. Fig. 6 shows that a core-gapped VM can scale to a
high number of dedicated cores (here up to 63) without any
contention on the host core. Indeed, for this workload run-
to-run latency does not noticeably increase with the guest
core count and remains stable at 26.18 ± 0.96 µs. The host
overhead can be kept low despite high core counts thanks
to the combined effect of interrupt delegation and asynchro-
nous calls: by handling most interrupts locally we reduce
the total exit count by 28× (table 4), and by using IPI notifi-
cations rather than Quarantine-style yield-polling [25] we
avoid saturating the host core with always-runnable VMM
threads (cyan-coloured “busy waiting” lines in the figure).

Fig. 7 shows that our prototype can also scale to multiple
CVMs. Rather than a single VM with an increasing number
of vCPUs, we run an increasing number of 4-core VMs and
plot the aggregate throughput. Because each instance of
CoreMark has only 4 vCPUs, the aggregate scales linearly,

9

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Charly Castes and Andrew Baumann

8 16 24 32 40 48 56 64
Number of host cores

0

100k

200k

300k

400k

Ag
gr

eg
at

e
Co

re
M

ar
k-

PR
O

sc
or

e Core-gapped CVMs
Shared-core VMs

Figure 7. Scaling to multiple VMs. We plot the aggregate
CoreMark-PRO score for an increasing count of 4-core
VMs/CVMs.

0.0

2.5

5.0

7.5

10.0

Th
ro

ug
hp

ut
 (G

b/
s) virtioSR-IOV

Core-gapped CVM
Shared-core VM

12
8 B

25
6 B

51
2 B 1 K 2 K 4 K 8 K 16

 K
32

 K
64

 K
12

8 K
25

6 K
51

2 K 1 M 2 M 4 M

Message size (B)

0

500

1000

La
te

nc
y

(µ
s)

0

25

50

Figure 8. NetPIPE [63] TCP results, 1500-byte IPv6 packets.

and we see that running up to 16 VMMs pinned on a single
host core does not harm throughput.

5.3 I/O performance
We next investigate I/O performance, where we expect to
see the impact (if any) of higher VM exit latencies.
To measure the performance of network virtualization,

we configure our guest VMs with two different network
interfaces: a virtio interface emulated by kvmtool running
on the host, and a virtual function network interface of an
Intel E2000 200GbE IPU, that we assign to the guest VMs
using SR-IOV pass-through. Another equivalent but unmod-
ified system serves as a network client. Fig. 8 shows that
the virtio interface (dashed lines) has substantially (up to
2×) higher latency and 30–70% lower throughput in a core-
gapped CVM due to the exit- and emulation-intensive nature
of virtual I/O. However, with an SR-IOV network interface,
data flows directly between the guest VM and the NIC hard-
ware, with the host serving only to deliver interrupts. The

0

1000

2000

Re
ad

 (M
iB

/s
)

64
 K

12
8 K

25
6 K

51
2 K 1 M 2 M 4 M 8 M 16

 M

Record length (B)

0

1000

2000

W
rit

e
(M

iB
/s

)

Core-gapped CVM
Shared-core VM

Figure 9. IOzone [46] sync read/write throughput to a virtio
block device, using O_DIRECT to bypass the guest’s cache.

Table 5. Redis benchmark. 50 clients, 512-byte objects.

Throughput Latency (ms)
(krps) Mean p95 p99

SET shared core 51.7 0.52 0.60 1.20
core gapped 56.2 0.63 0.97 1.44

GET shared core 48.8 0.54 0.64 1.20
core gapped 55.3 0.57 0.78 1.24

LRANGE 100 shared core 11.6 1.51 2.03 2.38
core gapped 14.5 1.24 1.56 1.82

SR-IOV configuration, which is becoming the norm for cloud
VMs, achieves latency within 10–20 µs of the baseline with
up to 5% higher throughput for larger message sizes as the
workload becomes more compute intensive. The additional
interrupt latency can be attributed to a limitation of our pro-
totype, which does not support direct interrupt delivery and
must therefore rely on the host to inject interrupts to the
VM. Direct interrupt delivery could be supported through
further changes to KVM and RMM.

Finally, fig. 9 shows that core-gapping suffers from the in-
creased latency of virtio block I/O, achieving similar through-
put only on large (>10MiB) virtual disk I/Os.

5.4 Application benchmarks
As a sample network-intensive server application, we use
redis-benchmark [56] to exercise Redis v7.0.14 (also us-
ing SR-IOV); table 5 reports the results. Core gapping
achieves around 10% higher throughput in line with micro-
benchmarks considering that redis saturates the guest CPU,
but also higher latency (up to 20% at p99) due to contention
on the host. The longer-running and memory-intensive
LRANGE query is an exception, delivering lower latency
due to reduced contention.

10

Sharing is leaking: blocking transient-execution attacks with core-gapped confidential VMs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

16 24 32 40 48 56 64
Number of host cores

0

100

200

300

400

Ke
rn

el
 b

ui
ld

 ti
m

e
(s

)

Core-gapped CVM
Shared-core VM

Figure 10. Linux kernel build; virtio disk & 48GiB RAM.

Lastly, fig. 10 shows that kernel builds on a core-gapped
CVM scale similarly to a shared-core VM. This benchmark
relies on virtio disk, which puts core-gapping at a disad-
vantage due to contention for I/O emulation on the host
core as illustrated by fig. 9, yet core-gapped CVMs achieve
comparable performance despite using one fewer vCPU.

5.5 Summary
We showed that our performance optimisations are effective
at reducing VM exit rates and that core-gapped CVMs offer
competitive performance with shared-core VMs, especially
for CPU-intensive workloads that benefit from less host in-
terference. Conversely, core-gapping suffers the highest over-
head for emulated I/O due to its exit-intensive nature. We
consider these results promising, for two reasons. First, cloud
servers are moving towards full I/O offload with SR-IOV for
both network interfaces and local storage. Second, confiden-
tial VMs on shared cores will have higher VM exit latencies
than the non-confidential baseline used in our experiments,
because of the added cost of world switches to/from the con-
fidential execution mode. Together with hardware support
for direct I/O [2, 31] it is therefore plausible that core-gapped
CVMs will outperform shared-core CVMs in the near future.

6 Discussion
Arm is not the only CPU architecture at risk of transient-
execution vulnerabilities. Indeed, most of our motivating
vulnerabilities (§2.2) were found in Intel and AMD systems (a
fact we attribute primarily to greater attention from security
researchers due to their larger market share to date in server
and desktop systems). We therefore discuss how our design
might apply to those CVM platforms.

6.1 Intel TDX
As we noted in §2.1, Intel TDX is architecturally very sim-
ilar to Arm CCA’s realm-management extension. Both ex-
tensions introduce a new privilege mode running trusted

firmware that manages the register context and page tables
of confidential VMs, and mediates their interactions with
the host hypervisor. In TDX, that trusted firmware is known
as the TDX module, and it provides a host-facing API that
is intended to be invoked through a call-gate mechanism
and bears a not-unsurprising similarity to the RMM’s realm
management interface. We therefore expect that our design
would apply directly to TDX, with a modified TDX module
that avoids relinquishing control of cores dedicated to CVM
execution and supports a shared-memory RPC interface with
the host rather than same-core calls.

Perhaps the biggest architectural difference between CCA
and TDX is that the latter uses separate secure and insecure
page tables for confidential VMs, allowing the host to ma-
nipulate untrusted portions of guest address space without
calling the firmware. By contrast, the RMM is invoked for
all page table modifications; thus we might expect a core-
gapped version of TDX to have moderately better relative
performance, due to fewer cross-core RPCs.
However, TDX also comes with a major drawback from

the point of view of a systems researcher: due to restrictions
implemented in the trusted code that configures and loads
the TDX module that are ultimately enforced by the proces-
sor, only TDX module binaries signed by Intel can be loaded.
Moreover, even though Intel has released source code for
the TDX module, there is no documented mode (not even a
debug mode) that would permit loading a non-Intel-signed
TDX module. While such restrictions may appear necessary
for the security of the overall TDX platform, this is not the
case. Just as CCA includes the measurement of the RMM
in the chain of trust for remote attestation, TDX also estab-
lishes the user’s trust in the specific implementation of the
TDX module by including its measurement as part of the
overall attestation signature. Thus, there is no specific reason
that only Intel-authored TDX modules need be attestable, let
alone that non-Intel-authored TDX modules be prevented
from loading on an end user’s platform.

Of course, Intel could add support for core gapping to the
TDX module themselves, but we hope they will go further
and consider relaxing such restrictions in time for the wider
availability of TDX hardware (at present it is available only
to some cloud providers). Ultimately, enabling research only
strengthens the security of platforms such as TDX.

6.2 AMD SEV
AMD SEV-SNP [1] differs notably from the design of other
confidential VM platforms, relying solely on the CPU’s in-
struction set (specifically, the VMRUN instruction) and its
exception handling mechanisms to mediate control transfers
between confidential VMs and the host. In particular, no
software execution on the CPU is more privileged than the
hypervisor, which is not trusted by CVMs. Adapting our de-
sign to provide core-gapped CVMs on AMD platforms is thus
substantially more challenging. Although we could easily

11

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Charly Castes and Andrew Baumann

anticipate VMRUN restricting the physical cores on which
confidential vCPUs could be dispatched, reporting and han-
dling VM exits wholly on a remote core without relinquishing
control to untrusted host code seems challenging. As a re-
minder, in our threat model of arbitrary unknown same-core
vulnerabilities, the exception handlers that run on the same
cores as the CVMs must be trusted by the guest. Thus, even
though the code needed to turn a VM exit into a cross-core
RPC, such as the shim hypervisor in Quarantine [25], may
be simple, because it is not part of the confidential VM that is
measured, attested and protected by SEV the end user cannot
rely on its existence.
One approach to core-gapped SEV VMs might leverage

its unique support for multiple VM privilege levels (VMPLs)
inside a single CVM, and modify the architecture to reflect
guest exceptions to a higher privilege level within the CVM.
In combination with an extension to the VMRUN instruction
to enforce a static binding of vCPUs to host cores, this could
enable core gapping. However, it’s not clear that such a
design could avoid fatal nested exceptions, nor that it would
retain sufficient control to the host; for example, the host
must be able to terminate a CVM and regain control of its
cores.

Overall, this illustrates the limitations of embedding com-
plex trusted execution functionality in a processor ISA [12],
even if it may be implemented by a flexible microcode.

7 Related Work
The most closely related work is Quarantine [25], which
implements core gapping for normal (non-confidential) VMs
on x86, with a trusted hypervisor. Although the same design
does not directly apply to confidential VMs (see §2.3), we
would expect to see broadly similar performance trade-offs.
In this regard, it’s interesting to note that Quarantine’s per-
formance evaluation showed a single host core becoming
saturated after around 10 guest cores, whereas our prototype
scales beyond 64 guest cores. We attribute this difference to
our asynchronous RPCs for long-running calls (§4.3) and del-
egated interrupt management (§4.4). Fig. 6 in §5.2 supports
this: when using busy waiting in place of asynchronous RPCs
and disabling interrupt delegation, core gapping suffers from
the same scalability bottlenecks as Quarantine.

Core Slicing [80], which seeks to address similar security
threats as core gapping, proposes hardware modifications to
enforce static allocation of cores and physical DRAM ranges
to bare-metal cloud tenants. In contrast, core-gapped VMs
work on existing hardware architectures, requiring changes
only to software (and trusted firmware) to bind vCPUs to
physical cores. Thus, like other VMs but unlike core slicing,
core-gapped VMs can support dynamic memory allocation
and deallocation, virtual I/O, host-initiated suspend/resume,
and live migration (once the RMM supports it). Finally, core-
gapping retains the familiar VM abstraction and control-path

APIs for both the guests and the host, and thus is compatible
with unmodified VMs and existing user-space VMMs.

A number of systems have used cross-core RPCs in place
of local exceptions to improve locality and performance.
FlexSC [64] showed the benefits of handling system calls on
a remote kernel core, especially in conjunction with a user-
mode thread library to exploit application-level concurrency.
Our handling of VM exits on a remote core has similar local-
ity benefits, but the VM interface precludes concurrent guest
execution while handling an exit. SplitX [38] proposed hard-
ware extensions to reduce the cost of remotely-handled VM
exits; core gapping may benefit from such extensions, but we
suspect they are no longer required since improvements in
hardware virtualization support have reduced the rate of VM
exits. A similar cross-core technique is also used to mitigate
the high direct cost of SGX enclave crossings [21, 50, 74].
A number of efforts have been made to verify safety and

correctness properties of the reference RMM [20, 39], but
transient-execution attacks and processor vulnerabilities are
out of scope; such efforts are therefore complementary to
our work.
Our use of the Linux CPU hotplug facility to dedicate

cores was inspired by the Linux kernel support for AWS
Nitro Enclaves [11]. Nitro enclaves allow a VM to donate a
subset of its cores to an enclave child at runtime. The dona-
tion is mediated by the Nitro hypervisor, which triggers a
virtual hotplug event and removes the corresponding vCPUs
from the parent VM before starting a new Nitro enclave VM
with the same number of vCPUs, effectively donating them
from the parent to the child. In this configuration the Nitro
hypervisor must be trusted by both parent VM and child
enclave. Unlike Nitro enclaves and VMs, the core-gapping
host kernel and the RMM run on bare metal. The host kernel
directly triggers the hotplug procedure and transfers control
to the RMM. Our approach does not depend on a trusted
intermediary for donating vCPUs, but requires a modifica-
tion to the hotplug path to skip the final step that would
otherwise physically shut down the cores or put them in a
low-power mode.

8 Conclusion
A ceaseless tide of CPU bugs threatens the security of confi-
dential VMs. Core gapping offers a practical mitigation to
such vulnerabilities whose performance can even exceed that
of traditional shared-core VMs, especially as cloud providers
move to full hardware offload for I/O virtualization. We eval-
uated an Arm prototype, and argued for the adoption of
core-gapped CVMs on platforms such as Intel TDX.

Acknowledgements
We thank Edouard Bugnion, David Culler, Bernhard Grill,
Stanko Novakovic, the anonymous reviewers and our shep-
herd Shih-Wei Li for their feedback.

12

Sharing is leaking: blocking transient-execution attacks with core-gapped confidential VMs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

References
[1] AMD SEV-SNP: Strengthening VM isolation with integrity protection

and more. AMD, January 2020. https://www.amd.com/system/files/
TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-
protection-and-more.pdf.

[2] AMD SEV-TIO: Trusted I/O for Secure Encrypted Virtualization. AMD,
March 2023. https://www.amd.com/content/dam/amd/en/documents/
developer/sev-tio-whitepaper.pdf.

[3] Straight-line Speculation. Arm Limited, June 2020. ver. 1.0 https:
//developer.arm.com/documentation/102825/latest/.

[4] Arm Realm Management Extension (RME) System Architecture. Arm
Limited, November 2021. Document DEN0129 ver. A.b https://
developer.arm.com/documentation/den0129/ab.

[5] Realm Management Monitor specification. Arm Limited, December
2022. Document DEN0137 ver. 1.0-bet2 https://developer.arm.com/
documentation/den0137/1-0eac5/.

[6] Armv-A Base RevC AEM fixed virtual platform (FVP). Arm Limited, June
2023. https://www.arm.com/products/development-tools/simulation/
fixed-virtual-platforms v11.22.

[7] SMC Calling Convention. Arm Limited, August 2023. Docu-
ment DEN0028F ver. 1.5 https://developer.arm.com/documentation/
den0028/latest/.

[8] CCA-capable kvmtool VMM. Arm Limited, May 2023. https://gitlab.
arm.com/linux-arm/kvmtool-cca tag: cca-rfc-v1.

[9] CCA-capable Linux kernel. Arm Limited, May 2023. https://gitlab.arm.
com/linux-arm/linux-cca tag: cca-full-rfc-v1.

[10] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cris-
tiano Giuffrida. Branch history injection: On the effectiveness of hard-
ware mitigations against cross-privilege Spectre-v2 attacks. In Proceed-
ings of the 31st USENIX Security Symposium, pages 971–988, August
2022. ISBN 978-1-939133-31-1. https://www.usenix.org/conference/
usenixsecurity22/presentation/barberis.

[11] Jeff Barr. AWS Nitro Enclaves – isolated EC2 environ-
ments to process confidential data, October 2020. https:
//aws.amazon.com/blogs/aws/aws-nitro-enclaves-isolated-ec2-
environments-to-process-confidential-data/.

[12] Andrew Baumann. Hardware is the new software. In Proceedings
of the 16th ACM Workshop on Hot Topics in Operating Systems, pages
132–137, 2017. doi: 10.1145/3102980.3103002.

[13] Jonathan Behrens, Adam Belay, and M. Frans Kaashoek. Performance
evolution of mitigating transient execution attacks. In Proceedings
of the 17th ACM European Conference on Computer Systems, pages
251–265, 2022. doi: 10.1145/3492321.3519559.

[14] Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel
Gruss, and Michael Schwarz. ÆPIC leak: Architecturally leaking
uninitialized data from the microarchitecture. In Proceedings of the 31st
USENIX Security Symposium, pages 3917–3934, Boston, MA, August
2022. ISBN 978-1-939133-31-1. https://www.usenix.org/conference/
usenixsecurity22/presentation/borrello.

[15] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. A systematic evaluation of transient execution
attacks and defenses. In Proceedings of the 28th USENIX Security Sym-
posium, pages 249–266, August 2019. ISBN 978-1-939133-06-9. https://
www.usenix.org/conference/usenixsecurity19/presentation/canella.

[16] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel Gruss, Moritz
Lipp, Marina Minkin, Daniel Moghimi, Frank Piessens, Michael
Schwarz, Berk Sunar, Jo Van Bulck, and Yuval Yarom. Fallout: Leaking
data on Meltdown-resistant CPUs. In Proceedings of the 26th ACM
Conference on Computer and Communications Security, pages 769–784,
2019. doi: 10.1145/3319535.3363219.

[17] Boru Chen, Yingchen Wang, Pradyumna Shome, Christopher W.
Fletcher, David Kohlbrenner, Riccardo Paccagnella, and Daniel Genkin.

GoFetch: Breaking constant-time cryptographic implementations us-
ing data memory-dependent prefetchers. In Proceedings of the 33rd
USENIX Security Symposium, August 2024. https://gofetch.fail/.

[18] Miles Dai, Riccardo Paccagnella, Miguel Gomez-Garcia, JohnMcCalpin,
and Mengjia Yan. Don’t mesh around: Side-channel attacks and mitiga-
tions on mesh interconnects. In Proceedings of the 31st USENIX Security
Symposium, pages 2857–2874, August 2022. ISBN 978-1-939133-31-
1. https://www.usenix.org/conference/usenixsecurity22/presentation/
dai.

[19] CoreMark PRO. EEMBC, July 2019. v1.1.2743 https://www.eembc.org/
coremark-pro.

[20] Anthony C. J. Fox, Gareth Stockwell, Shale Xiong, Hanno Becker,
Dominic P. Mulligan, Gustavo Petri, and Nathan Chong. A verifica-
tion methodology for the Arm confidential computing architecture:
From a secure specification to safe implementations. Proceedings of
the ACM on Programming Languages, 7(OOPSLA1), April 2023. doi:
10.1145/3586040.

[21] Adrien Ghosn, James R. Larus, and Edouard Bugnion. Secured routines:
Language-based construction of trusted execution environments. In
Proceedings of the 2019 USENIX Annual Technical Conference, pages
571–586, Renton, WA, July 2019. ISBN 978-1-939133-03-8. http://www.
usenix.org/conference/atc19/presentation/ghosn.

[22] Floris Gorter, Taddeus Kroes, Herbert Bos, and Cristiano Giuf-
frida. Sticky Tags: Efficient and deterministic spatial memory er-
ror mitigation using persistent memory tags. In Proceedings of
the 45th IEEE Symposium on Security and Privacy, May 2024. doi:
10.1109/SP54263.2024.00263.

[23] Aditya Gulavani, Hormuzd M. Khosravi, Balaji Masanamuthu
Chinnathurai, and Shiny Sebastian. Performance considera-
tions of hardware-isolated partitioned VMs with Intel TDX,
2023. https://www.intel.com/content/www/us/en/developer/articles/
technical/tdx-performance-isolated-partitioned-vms.html.

[24] Ori Hadary, Luke Marshall, Ishai Menache, Abhisek Pan, Esaias E
Greeff, David Dion, Star Dorminey, Shailesh Joshi, Yang Chen, Mark
Russinovich, and Thomas Moscibroda. Protean: VM allocation service
at scale. In Proceedings of the 14th USENIX Symposium on Operating
Systems Design and Implementation, pages 845–861, November 2020.
ISBN 978-1-939133-19-9. https://www.usenix.org/conference/osdi20/
presentation/hadary.

[25] Mathe Hertogh, Manuel Wiesinger, Sebastian Österlund, Marius
Muench, Nadav Amit, Herbert Bos, and Cristiano Giuffrida. Quaran-
tine: Mitigating transient execution attacks with physical domain
isolation. In Proceedings of the 26th International Symposium on
Research in Attacks, Intrusions and Defenses, October 2023. doi:
10.1145/3607199.3607248.

[26] Mathé Hertogh, Sander Wiebing, and Cristiano Giuffrida. Leaky Ad-
dress Masking: Exploiting unmasked Spectre gadgets with noncanoni-
cal address translation. In Proceedings of the 45th IEEE Symposium on
Security and Privacy, May 2024. doi: 10.1109/SP54263.2024.00158.

[27] Jana Hofmann, Emanuele Vannacci, Cedric Fournet, Boris Kopf, and
Oleksii Oleksenko. Speculation at fault: Modeling and testing mi-
croarchitectural leakage of CPU exceptions. In Proceedings of the 32nd
USENIX Security Symposium, pages 7143–7160, August 2023. ISBN 978-
1-939133-37-3. https://www.usenix.org/conference/usenixsecurity23/
presentation/hofmann.

[28] Speculative Behavior of SWAPGS and Segment Registers. Intel
Corp., August 2019. ID 660228 https://www.intel.com/content/
www/us/en/developer/articles/technical/software-security-
guidance/advisory-guidance/speculative-behavior-swapgs-and-
segment-registers.html.

[29] Snoop-Assisted L1 Data Sampling. Intel Corp., October
2020. ID 758367 https://www.intel.com/content/www/us/en/
developer/articles/technical/software-security-guidance/technical-
documentation/snoop-assisted-l1-data-sampling.html.

13

https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/system/files/TechDocs/SEV-SNP-strengthening-vm-isolation-with-integrity-protection-and-more.pdf
https://www.amd.com/content/dam/amd/en/documents/developer/sev-tio-whitepaper.pdf
https://www.amd.com/content/dam/amd/en/documents/developer/sev-tio-whitepaper.pdf
https://developer.arm.com/documentation/102825/latest/
https://developer.arm.com/documentation/102825/latest/
https://developer.arm.com/documentation/den0129/ab
https://developer.arm.com/documentation/den0129/ab
https://developer.arm.com/documentation/den0137/1-0eac5/
https://developer.arm.com/documentation/den0137/1-0eac5/
https://www.arm.com/products/development-tools/simulation/fixed-virtual-platforms
https://www.arm.com/products/development-tools/simulation/fixed-virtual-platforms
https://developer.arm.com/documentation/den0028/latest/
https://developer.arm.com/documentation/den0028/latest/
https://gitlab.arm.com/linux-arm/kvmtool-cca
https://gitlab.arm.com/linux-arm/kvmtool-cca
https://gitlab.arm.com/linux-arm/linux-cca
https://gitlab.arm.com/linux-arm/linux-cca
https://www.usenix.org/conference/usenixsecurity22/presentation/barberis
https://www.usenix.org/conference/usenixsecurity22/presentation/barberis
https://aws.amazon.com/blogs/aws/aws-nitro-enclaves-isolated-ec2-environments-to-process-confidential-data/
https://aws.amazon.com/blogs/aws/aws-nitro-enclaves-isolated-ec2-environments-to-process-confidential-data/
https://aws.amazon.com/blogs/aws/aws-nitro-enclaves-isolated-ec2-environments-to-process-confidential-data/
https://doi.org/10.1145/3102980.3103002
https://doi.org/10.1145/3492321.3519559
https://www.usenix.org/conference/usenixsecurity22/presentation/borrello
https://www.usenix.org/conference/usenixsecurity22/presentation/borrello
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://doi.org/10.1145/3319535.3363219
https://gofetch.fail/
https://www.usenix.org/conference/usenixsecurity22/presentation/dai
https://www.usenix.org/conference/usenixsecurity22/presentation/dai
https://www.eembc.org/coremark-pro
https://www.eembc.org/coremark-pro
https://doi.org/10.1145/3586040
http://www.usenix.org/conference/atc19/presentation/ghosn
http://www.usenix.org/conference/atc19/presentation/ghosn
https://doi.org/10.1109/SP54263.2024.00263
https://www.intel.com/content/www/us/en/developer/articles/technical/tdx-performance-isolated-partitioned-vms.html
https://www.intel.com/content/www/us/en/developer/articles/technical/tdx-performance-isolated-partitioned-vms.html
https://www.usenix.org/conference/osdi20/presentation/hadary
https://www.usenix.org/conference/osdi20/presentation/hadary
https://doi.org/10.1145/3607199.3607248
https://doi.org/10.1109/SP54263.2024.00158
https://www.usenix.org/conference/usenixsecurity23/presentation/hofmann
https://www.usenix.org/conference/usenixsecurity23/presentation/hofmann
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-behavior-swapgs-and-segment-registers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-behavior-swapgs-and-segment-registers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-behavior-swapgs-and-segment-registers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-behavior-swapgs-and-segment-registers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/snoop-assisted-l1-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/snoop-assisted-l1-data-sampling.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/snoop-assisted-l1-data-sampling.html

ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Charly Castes and Andrew Baumann

[30] Intel Trust Domain CPU Architectural Extensions. Intel Corp.,
September 2020. Ref. #343754-001US https://software.intel.com/
content/dam/develop/external/us/en/documents/intel-tdx-cpu-
architectural-specification.pdf.

[31] Intel TDX Connect Architecture Specification. Intel Corp., May
2021. https://www.intel.com/content/www/us/en/content-details/
773614/intel-tdx-connect-architecture-specification.html.

[32] Processor MMIO Stale Data Vulnerabilities. Intel Corp., June
2022. ID 758360 https://www.intel.com/content/www/us/en/
developer/articles/technical/software-security-guidance/technical-
documentation/processor-mmio-stale-data-vulnerabilities.html.

[33] Intel SGX Attestation Technical Details. Intel Corp., July
2023. https://www.intel.com/content/www/us/en/security-center/
technical-details/sgx-attestation-technical-details.html.

[34] Trust Domain Security Guidance for Developers. Intel Corp., 2023.
https://www.intel.com/content/www/us/en/developer/articles/
technical/software-security-guidance/best-practices/trusted-
domain-security-guidance-for-developers.html. Accessed Nov 2023.

[35] Intel Transactional Synchronization Extension (TSX) Disable Update for
Selected Processors. Intel Corp., June 2023. Document. #643557 rev. 2.3
https://cdrdv2.intel.com/v1/dl/getContent/643557.

[36] Juhee Kim, Jinbum Park, Sihyeon Roh, Jaeyoung Chung, Youngjoo Lee,
Taesoo Kim, and Byoungyoung Lee. TikTag: Breaking ARM’s memory
tagging extension with speculative execution. CoRR, abs/2406.08719,
June 2024. https://arxiv.org/abs/2406.08719.

[37] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. Spectre attacks: Exploit-
ing speculative execution. In Proceedings of the 40th IEEE Symposium
on Security and Privacy, pages 1–19, 2019. doi: 10.1109/SP.2019.00002.

[38] Alex Landau, Muli Ben-Yehuda, and Abel Gordon. SplitX:
Split guest/hypervisor execution on multi-core. In 3rd Work-
shop on I/O Virtualization (WIOV 11), Portland, OR, June 2011.
USENIX. https://www.usenix.org/conference/wiov11/splitx-split-
guesthypervisor-execution-multi-core.

[39] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu, Jason Nieh,
Yousuf Sait, and Gareth Stockwell. Design and verification of the
Arm confidential compute architecture. In Proceedings of the 16th
USENIX Symposium on Operating Systems Design and Implementation,
July 2022. https://www.usenix.org/conference/osdi22/presentation/li.

[40] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner
Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel
Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel
memory from user space. In Proceedings of the 27th USENIX Secu-
rity Symposium, pages 973–990, August 2018. ISBN 978-1-939133-04-
5. https://www.usenix.org/conference/usenixsecurity18/presentation/
lipp.

[41] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B. Lee.
Last-level cache side-channel attacks are practical. In Proceedings of
the 36th IEEE Symposium on Security and Privacy, pages 605–622, 2015.
doi: 10.1109/SP.2015.43.

[42] Analysis and mitigation of speculative store bypass (CVE-2018-3639). Mi-
crosoft, May 2018. https://msrc.microsoft.com/blog/2018/05/analysis-
and-mitigation-of-speculative-store-bypass-cve-2018-3639/.

[43] Manage Hyper-V hypervisor scheduler types. Microsoft, May 2023.
https://learn.microsoft.com/en-us/windows-server/virtualization/
hyper-v/manage/manage-hyper-v-scheduler-types.

[44] Daniel Moghimi. Downfall: Exploiting speculative data gathering.
In Proceedings of the 32nd USENIX Security Symposium, pages 7179–
7193, August 2023. ISBN 978-1-939133-37-3. https://www.usenix.org/
conference/usenixsecurity23/presentation/moghimi.

[45] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel
Gruss, and Frank Piessens. Plundervolt: Software-based fault in-
jection attacks against Intel SGX. In Proceedings of the 41st IEEE

Symposium on Security and Privacy, pages 1466–1482, 2020. doi:
10.1109/SP40000.2020.00057.

[46] William D. Norcott, Don Capps, et al. IOzone filesystem benchmark,
May 2023. v3.506 https://www.iozone.org/.

[47] Oleksii Oleksenko, Bohdan Trach, Robert Krahn, Mark Silberstein, and
Christof Fetzer. Varys: Protecting SGX enclaves from practical side-
channel attacks. In Proceedings of the 2018 USENIX Annual Technical
Conference, pages 227–240, July 2018. ISBN 978-1-939133-01-4. https:
//www.usenix.org/conference/atc18/presentation/oleksenko.

[48] Oleksii Oleksenko, Marco Guarnieri, Boris Köpf, and Mark Silberstein.
Hide and seek with spectres: Efficient discovery of speculative infor-
mation leaks with random testing. In Proceedings of the 44th IEEE
Symposium on Security and Privacy, pages 1737–1752, May 2023. doi:
10.1109/SP46215.2023.10179391.

[49] Hard Partitioning with Oracle Linux KVM. Oracle, June 2022. https://
www.oracle.com/a/ocom/docs/linux/ol-kvm-hard-partitioning.pdf.

[50] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein.
Eleos: ExitLess OS services for SGX enclaves. In Proceedings of the
12th ACM European Conference on Computer Systems, pages 238–253,
2017. doi: 10.1145/3064176.3064219.

[51] Tavis Ormandy. Reptar. https://lock.cmpxchg8b.com/reptar.html,
November 2023.

[52] Tavis Ormandy. Zenbleed. https://cmpxchg8b.com/zenbleed.html,
July 2023.

[53] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. CrossTalk: Speculative data leaks across cores are real. In
Proceedings of the 42nd IEEE Symposium on Security and Privacy, May
2021. doi: 10.1109/SP40001.2021.00020.

[54] Hany Ragab, Andrea Mambretti, Anil Kurmus, and Cristiano Giuffrida.
GhostRace: Exploiting and mitigating speculative race conditions. In
Proceedings of the 33rd USENIX Security Symposium, August 2024. https:
//www.vusec.net/projects/ghostrace/.

[55] Joseph Ravichandran, Weon Taek Na, Jay Lang, and Mengjia Yan.
PACMAN: Attacking ARM pointer authentication with speculative
execution. In Proceedings of the 49th IEEE International Symposium on
Computer Architecture, 2022. doi: 10.1145/3470496.3527429.

[56] Redis benchmark. Redis, 2023. https://redis.io/docs/management/
optimization/benchmarks/.

[57] Xida Ren, Logan Moody, Mohammadkazem Taram, Matthew Jordan,
Dean M. Tullsen, and Ashish Venkat. I see dead µops: Leaking secrets
via Intel/AMD micro-op caches. In Proceedings of the 48th IEEE Inter-
national Symposium on Computer Architecture, pages 361–374, 2021.
doi: 10.1109/ISCA52012.2021.00036.

[58] Ravi Sahita, Vedvyas Shanbhogue, Andrew Bresticker, Atul Khare,
Atish Patra, Samuel Ortiz, Dylan Reid, and Rajnesh Kanwal. CoVE:
Towards confidential computing on RISC-V platforms. In Proceedings
of the 20th ACM International Conference on Computing Frontiers, CF
’23, pages 315–321, 2023. doi: 10.1145/3587135.3592168.

[59] Jose Rodrigo Sanchez Vicarte, Pradyumna Shome, Nandeeka Nayak,
Caroline Trippel, Adam Morrison, David Kohlbrenner, and Christo-
pher W. Fletcher. Opening Pandora’s Box: A systematic study of new
ways microarchitecture can leak private data. In Proceedings of the
48th IEEE International Symposium on Computer Architecture, pages
347–360, 2021. doi: 10.1109/ISCA52012.2021.00035.

[60] Jose Rodrigo Sanchez Vicarte, Michael Flanders, Riccardo Paccagnella,
Grant Garrett-Grossman, Adam Morrison, Christopher W. Fletcher,
and David Kohlbrenner. Augury: Using data memory-dependent
prefetchers to leak data at rest. In Proceedings of the 43rd IEEE Sympo-
sium on Security and Privacy, 2022. doi: 10.1109/SP46214.2022.00089.

[61] Michael Schwarz, Moritz Lipp, Daniel Moghimi, Jo Van Bulck, Julian
Stecklina, Thomas Prescher, and Daniel Gruss. ZombieLoad: Cross-
privilege-boundary data sampling. In Proceedings of the 26th ACM
Conference on Computer and Communications Security, pages 753–768,
2019. doi: 10.1145/3319535.3354252.

14

https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-cpu-architectural-specification.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-cpu-architectural-specification.pdf
https://software.intel.com/content/dam/develop/external/us/en/documents/intel-tdx-cpu-architectural-specification.pdf
https://www.intel.com/content/www/us/en/content-details/773614/intel-tdx-connect-architecture-specification.html
https://www.intel.com/content/www/us/en/content-details/773614/intel-tdx-connect-architecture-specification.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/processor-mmio-stale-data-vulnerabilities.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/processor-mmio-stale-data-vulnerabilities.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/processor-mmio-stale-data-vulnerabilities.html
https://www.intel.com/content/www/us/en/security-center/technical-details/sgx-attestation-technical-details.html
https://www.intel.com/content/www/us/en/security-center/technical-details/sgx-attestation-technical-details.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/trusted-domain-security-guidance-for-developers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/trusted-domain-security-guidance-for-developers.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/best-practices/trusted-domain-security-guidance-for-developers.html
https://cdrdv2.intel.com/v1/dl/getContent/643557
https://arxiv.org/abs/2406.08719
https://doi.org/10.1109/SP.2019.00002
https://www.usenix.org/conference/wiov11/splitx-split-guesthypervisor-execution-multi-core
https://www.usenix.org/conference/wiov11/splitx-split-guesthypervisor-execution-multi-core
https://www.usenix.org/conference/osdi22/presentation/li
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://doi.org/10.1109/SP.2015.43
https://msrc.microsoft.com/blog/2018/05/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://msrc.microsoft.com/blog/2018/05/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://learn.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/manage-hyper-v-scheduler-types
https://learn.microsoft.com/en-us/windows-server/virtualization/hyper-v/manage/manage-hyper-v-scheduler-types
https://www.usenix.org/conference/usenixsecurity23/presentation/moghimi
https://www.usenix.org/conference/usenixsecurity23/presentation/moghimi
https://doi.org/10.1109/SP40000.2020.00057
https://www.iozone.org/
https://www.usenix.org/conference/atc18/presentation/oleksenko
https://www.usenix.org/conference/atc18/presentation/oleksenko
https://doi.org/10.1109/SP46215.2023.10179391
https://www.oracle.com/a/ocom/docs/linux/ol-kvm-hard-partitioning.pdf
https://www.oracle.com/a/ocom/docs/linux/ol-kvm-hard-partitioning.pdf
https://doi.org/10.1145/3064176.3064219
https://lock.cmpxchg8b.com/reptar.html
https://cmpxchg8b.com/zenbleed.html
https://doi.org/10.1109/SP40001.2021.00020
https://www.vusec.net/projects/ghostrace/
https://www.vusec.net/projects/ghostrace/
https://doi.org/10.1145/3470496.3527429
https://redis.io/docs/management/optimization/benchmarks/
https://redis.io/docs/management/optimization/benchmarks/
https://doi.org/10.1109/ISCA52012.2021.00036
https://doi.org/10.1145/3587135.3592168
https://doi.org/10.1109/ISCA52012.2021.00035
https://doi.org/10.1109/SP46214.2022.00089
https://doi.org/10.1145/3319535.3354252

Sharing is leaking: blocking transient-execution attacks with core-gapped confidential VMs ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

[62] Michael Schwarz, Martin Schwarzl, Moritz Lipp, Jon Masters, and
Daniel Gruss. NetSpectre: Read arbitrary memory over network. In
Proceedings of the 24th European Symposium on Research in Computer
Security (ESORICS 2019), pages 279–299. Springer-Verlag, September
2019. doi: 10.1007/978-3-030-29959-0_14.

[63] Quinn Snell, Armin Mikler, and John Gustafson. NetPIPE: A network
protocol independent performance evaluator. In Proceedings of the
IASTED International Conference on Intelligent Information Manage-
ment and Systems, June 1996.

[64] Livio Soares and Michael Stumm. FlexSC: Flexible system call schedul-
ing with exception-less system calls. In Proceedings of the 9th USENIX
Symposium on Operating Systems Design and Implementation, Octo-
ber 2010. https://www.usenix.org/conference/osdi10/flexsc-flexible-
system-call-scheduling-exception-less-system-calls.

[65] Julian Stecklina and Thomas Prescher. LazyFP: Leaking FPU register
state using microarchitectural side-channels. CoRR, abs/1806.07480,
August 2018. https://arxiv.org/abs/1806.07480.

[66] iTLB multihit. Tacito Security, 2019. https://www.tacitosecurity.com/
multihit.html.

[67] Daniël Trujillo, Johannes Wikner, and Kaveh Razavi. Inception: Expos-
ing new attack surfaces with training in transient execution. In Proceed-
ings of the 32nd USENIX Security Symposium, pages 7303–7320, August
2023. ISBN 978-1-939133-37-3. https://www.usenix.org/conference/
usenixsecurity23/presentation/trujillo.

[68] Realm management monitor reference implementation (TF-RMM).
Trusted Firmware, May 2023. https://github.com/TF-RMM/tf-rmm
v0.3.0.

[69] Jo Van Bulck,MarinaMinkin, OfirWeisse, Daniel Genkin, Baris Kasikci,
Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom,
and Raoul Strackx. Foreshadow: Extracting the keys to the Intel SGX
kingdom with transient out-of-order execution. In Proceedings of the
27th USENIX Security Symposium, pages 991–1008, 2018. ISBN 978-
1-939133-04-5. https://www.usenix.org/conference/usenixsecurity18/
presentation/bulck.

[70] Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Ma-
rina Minkin, Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss,
and Frank Piessens. LVI: Hijacking transient execution through
microarchitectural load value injection. In Proceedings of the 41st
IEEE Symposium on Security and Privacy, pages 54–72, 2020. doi:
10.1109/SP40000.2020.00089.

[71] Stephan van Schaik, Alyssa Milburn, Sebastian Österlund, Pietro Frigo,
Giorgi Maisuradze, Kaveh Razavi, Herbert Bos, and Cristiano Giuf-
frida. RIDL: Rogue in-flight data load. In Proceedings of the 40th IEEE
Symposium on Security and Privacy, pages 88–105, May 2019. doi:
10.1109/SP.2019.00087.

[72] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin,
and Yuval Yarom. CacheOut: Leaking data on Intel CPUs via cache
evictions. In Proceedings of the 42nd IEEE Symposium on Security and
Privacy, pages 339–354, 2021. doi: 10.1109/SP40001.2021.00064.

[73] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-
heimer, Eric Tune, and JohnWilkes. Large-scale cluster management at
Google with Borg. In Proceedings of the 10th ACM European Conference
on Computer Systems, 2015. doi: 10.1145/2741948.2741964.

[74] Ofir Weisse, Valeria Bertacco, and Todd Austin. Regaining lost cycles
with HotCalls: A fast interface for SGX secure enclaves. In Proceedings
of the 44th IEEE International Symposium on Computer Architecture,
pages 81–93, 2017. doi: 10.1145/3079856.3080208.

[75] Sander Wiebing, Alvise de Faveri Tron, Herbert Bos, and Cristiano
Giuffrida. InSpectre Gadget: Inspecting the residual attack surface of
cross-privilege Spectre v2. In Proceedings of the 33rd USENIX Security
Symposium, August 2024. https://www.vusec.net/projects/native-bhi/.

[76] JohannesWikner and Kaveh Razavi. RETBLEED: Arbitrary speculative
code execution with return instructions. In Proceedings of the 31st

USENIX Security Symposium, pages 3825–3842, August 2022. ISBN 978-
1-939133-31-1. https://www.usenix.org/conference/usenixsecurity22/
presentation/wikner.

[77] Wenjie Xiong and Jakub Szefer. Survey of transient execution attacks
and their mitigations. ACM Computing Surveys, 54(3), May 2021. doi:
10.1145/3442479.

[78] Ruiyi Zhang, Taehyun Kim, Daniel Weber, and Michael Schwarz.
(M)WAIT for it: Bridging the gap between microarchitectural and
architectural side channels. In Proceedings of the 32nd USENIX Security
Symposium, pages 7267–7284, August 2023. ISBN 978-1-939133-37-
3. https://www.usenix.org/conference/usenixsecurity23/presentation/
zhang-ruiyi.

[79] Ruiyi Zhang, Lukas Gerlach, Daniel Weber, Lorenz Hetterich, Youheng
Lü, Andreas Kogler, andMichael Schwarz. CacheWarp: Software-based
fault injection using selective state reset. In Proceedings of the 33rd
USENIX Security Symposium, August 2024. https://cachewarpattack.
com/.

[80] Ziqiao Zhou, Yizhou Shan, Weidong Cui, Xinyang Ge, Marcus Peinado,
and Andrew Baumann. Core slicing: closing the gap between leaky
confidential VMs and bare-metal cloud. In Proceedings of the 17th
USENIX Symposium on Operating Systems Design and Implementation,
pages 247–267, July 2023. ISBN 978-1-939133-34-2. https://www.usenix.
org/conference/osdi23/presentation/zhou-ziqiao.

15

https://doi.org/10.1007/978-3-030-29959-0_14
https://www.usenix.org/conference/osdi10/flexsc-flexible-system-call-scheduling-exception-less-system-calls
https://www.usenix.org/conference/osdi10/flexsc-flexible-system-call-scheduling-exception-less-system-calls
https://arxiv.org/abs/1806.07480
https://www.tacitosecurity.com/multihit.html
https://www.tacitosecurity.com/multihit.html
https://www.usenix.org/conference/usenixsecurity23/presentation/trujillo
https://www.usenix.org/conference/usenixsecurity23/presentation/trujillo
https://github.com/TF-RMM/tf-rmm
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://www.usenix.org/conference/usenixsecurity18/presentation/bulck
https://doi.org/10.1109/SP40000.2020.00089
https://doi.org/10.1109/SP.2019.00087
https://doi.org/10.1109/SP40001.2021.00064
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/3079856.3080208
https://www.vusec.net/projects/native-bhi/
https://www.usenix.org/conference/usenixsecurity22/presentation/wikner
https://www.usenix.org/conference/usenixsecurity22/presentation/wikner
https://doi.org/10.1145/3442479
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-ruiyi
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-ruiyi
https://cachewarpattack.com/
https://cachewarpattack.com/
https://www.usenix.org/conference/osdi23/presentation/zhou-ziqiao
https://www.usenix.org/conference/osdi23/presentation/zhou-ziqiao

	Abstract
	1 Introduction
	2 Background
	2.1 Confidential VMs
	2.2 Transient-execution vulnerabilities
	2.3 Core gapping as the basis of isolation
	2.4 Threat model

	3 Design
	4 Implementation
	4.1 Arm CCA
	4.2 Dedicating cores
	4.3 Remote RMM calls
	4.4 Interrupt management

	5 Evaluation
	5.1 Experimental setup
	5.2 Scaling a CPU-intensive workload
	5.3 I/O performance
	5.4 Application benchmarks
	5.5 Summary

	6 Discussion
	6.1 Intel TDX
	6.2 AMD SEV

	7 Related Work
	8 Conclusion
	Acknowledgements
	References

